Distinctly different active sites of ZnO-ZrO2 catalysts in CO2 and CO hydrogenation to methanol reactions
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-59996-5
Download full text from publisher
References listed on IDEAS
- Zhenhua Zhang & Xuanye Chen & Jincan Kang & Zongyou Yu & Jie Tian & Zhongmiao Gong & Aiping Jia & Rui You & Kun Qian & Shun He & Botao Teng & Yi Cui & Ye Wang & Wenhua Zhang & Weixin Huang, 2021. "The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Yuhao Wang & Shyam Kattel & Wengui Gao & Kongzhai Li & Ping Liu & Jingguang G. Chen & Hua Wang, 2019. "Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
- Daniel Laudenschleger & Holger Ruland & Martin Muhler, 2020. "Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Yanan Li & Huan Liu & Jun Mao & Meng Gao & Yunlong Zhang & Qiao Zhao & Meng Liu & Yao Song & Jingting Hu & Wangwang Zhang & Rui Huang & Wu Zhou & Kaifeng Wu & Wei Liu & Liang Yu & Xiaoju Cui & Dehui D, 2025. "MoS2-confined Rh-Zn atomic pair boosts photo-driven methane carbonylation to acetic acid," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
- Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
- Zhao, Ning & Wang, Jiangjiang & Tian, Yuyang & Yao, Zibo & Yan, Suying, 2024. "Numerical study on a novel solar-thermal-reaction system for clean hydrogen production of methanol-steam reforming," Renewable Energy, Elsevier, vol. 222(C).
- Han, Jian & Yu, Jun & Xue, Zhaoteng & Wu, Guisheng & Mao, Dongsen, 2024. "Highly efficient CO2 hydrogenation to methanol over Cu–Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method," Renewable Energy, Elsevier, vol. 222(C).
- Guo Tian & Xinyan Liu & Chenxi Zhang & Xiaoyu Fan & Hao Xiong & Xiao Chen & Zhengwen Li & Binhang Yan & Lan Zhang & Ning Wang & Hong-Jie Peng & Fei Wei, 2022. "Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr2O4 spinel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Yaguang Li & Xianhua Bai & Dachao Yuan & Chenyang Yu & Xingyuan San & Yunna Guo & Liqiang Zhang & Jinhua Ye, 2023. "Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Xueying Wan & Yifan Li & Yihong Chen & Jun Ma & Ying-Ao Liu & En-Dian Zhao & Yadi Gu & Yilin Zhao & Yi Cui & Rongtan Li & Dong Liu & Ran Long & Kim Meow Liew & Yujie Xiong, 2024. "A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Junxin Guo & Zhao Luo & GuoTao Hu & Zhao Wang, 2021. "Synthesis of oxygen vacancies enriched Cu/ZnO/CeO2 for CO2 hydrogenation to methanol," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1171-1179, December.
- Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Shenghui Zhou & Wenrui Ma & Uzma Anjum & Mohammadreza Kosari & Shibo Xi & Sergey M. Kozlov & Hua Chun Zeng, 2023. "Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Sigmund Jensen & Mathias H. R. Mammen & Martin Hedevang & Zheshen Li & Lutz Lammich & Jeppe V. Lauritsen, 2024. "Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Chuanhao Wang & Junjie Du & Lin Zeng & Zhongling Li & Yizhou Dai & Xu Li & Zijun Peng & Wenlong Wu & Hongliang Li & Jie Zeng, 2023. "Direct synthesis of extra-heavy olefins from carbon monoxide and water," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
- Jingting Hu & Zeyu Wei & Yunlong Zhang & Rui Huang & Mingchao Zhang & Kang Cheng & Qinghong Zhang & Yutai Qi & Yanan Li & Jun Mao & Junfa Zhu & Lihui Wu & Wu Wen & Shengsheng Yu & Yang Pan & Jiuzhong , 2023. "Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59996-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.