IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000168.html
   My bibliography  Save this article

Highly efficient CO2 hydrogenation to methanol over Cu–Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method

Author

Listed:
  • Han, Jian
  • Yu, Jun
  • Xue, Zhaoteng
  • Wu, Guisheng
  • Mao, Dongsen

Abstract

In this study, a series of Cu–Ce1-xZrxO2 (x = 0, 0.2, 0.5, 0.8, 1) catalysts were prepared by an eco-friendly and facile solid-phase grinding method. The effect of different Ce/Zr molar ratios on the performance of Cu–Ce1-xZrxO2 catalysts for CO2 hydrogenation to methanol was investigated. The results showed that the Cu–Ce0.5Zr0·5O2 catalyst had the best catalytic performance, with CO2 conversion of 15.2 % and methanol yield of 7.5 % at GHSV = 3600 mL/(gcat·h)); when GHSV was increased to 20,000 mL/(gcat·h), the space-time yield of methanol reached 270.8 gCH3OH/(kgcat·h). X-ray diffraction (XRD), scanning electron microscope (SEM), N2 adsorption-desorption, N2O chemisorption, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction by H2 (H2-TPR), and temperature programmed desorption (H2-TPD, CO2-TPD) techniques were used to characterize the catalysts, and the higher reactivity of Cu–Ce0.5Zr0·5O2 can be attributed to more Cu0 species, defect oxygen and basic sites. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) results revealed that the hydrogenation of CO2 to methanol occurred through the formate intermediate pathway. This work proposed an eco-friendly and facile method for the preparation of high-performance Cu-based catalysts and the systematic study provided a deep insight for the development of high-performance Cu-based catalysts for methanol synthesis from CO2 hydrogenation.

Suggested Citation

  • Han, Jian & Yu, Jun & Xue, Zhaoteng & Wu, Guisheng & Mao, Dongsen, 2024. "Highly efficient CO2 hydrogenation to methanol over Cu–Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000168
    DOI: 10.1016/j.renene.2024.119951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.