IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p612-d315077.html
   My bibliography  Save this article

Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization

Author

Listed:
  • Fabian Scheepers

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany)

  • Markus Stähler

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany)

  • Andrea Stähler

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany)

  • Edward Rauls

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany)

  • Martin Müller

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany)

  • Marcelo Carmo

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany)

  • Werner Lehnert

    (Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, IEK-14, Electrochemical Process Engineering, 52425 Juelich, Germany
    Faculty of Mechanical Engineering, RWTH Aachen University, 52072 Aachen, Germany)

Abstract

Hydrogen produced in a polymer electrolyte membrane (PEM) electrolyzer must be stored under high pressure. It is discussed whether the gas should be compressed in subsequent gas compressors or by the electrolyzer. While gas compressor stages can be reduced in the case of electrochemical compression, safety problems arise for thin membranes due to the undesired permeation of hydrogen across the membrane to the oxygen side, forming an explosive gas. In this study, a PEM system is modeled to evaluate the membrane-specific total system efficiency. The optimum efficiency is given depending on the external heat requirement, permeation, cell pressure, current density, and membrane thickness. It shows that the heat requirement and hydrogen permeation dominate the maximum efficiency below 1.6 V, while, above, the cell polarization is decisive. In addition, a pressure-optimized cell operation is introduced by which the optimum cathode pressure is set as a function of current density and membrane thickness. This approach indicates that thin membranes do not provide increased safety issues compared to thick membranes. However, operating an N212-based system instead of an N117-based one can generate twice the amount of hydrogen at the same system efficiency while only one compressor stage must be added.

Suggested Citation

  • Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:612-:d:315077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    2. Tjarks, Geert & Gibelhaus, Andrej & Lanzerath, Franz & Müller, Martin & Bardow, André & Stolten, Detlef, 2018. "Energetically-optimal PEM electrolyzer pressure in power-to-gas plants," Applied Energy, Elsevier, vol. 218(C), pages 192-198.
    3. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    2. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    3. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    4. Bernd Emonts & Martin Müller & Michael Hehemann & Holger Janßen & Roger Keller & Markus Stähler & Andrea Stähler & Veit Hagenmeyer & Roland Dittmeyer & Peter Pfeifer & Simon Waczowicz & Michael Rubin , 2022. "A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling," Energies, MDPI, vol. 15(10), pages 1-24, May.
    5. Paolo Aliberti & Marco Sorrentino & Marco Califano & Cesare Pianese & Luca Capozucca & Laura Cristiani & Gianpiero Lops & Roberto Mancini, 2023. "Modelling Methodologies to Design and Control Renewables and Hydrogen-Based Telecom Towers Power Supply Systems," Energies, MDPI, vol. 16(17), pages 1-19, August.
    6. Rahaf S. Ghanem & Laura Nousch & Maria Richter, 2022. "Modeling of a Grid-Independent Set-Up of a PV/SOFC Micro-CHP System Combined with a Seasonal Energy Storage for Residential Applications," Energies, MDPI, vol. 15(4), pages 1-20, February.
    7. Xiaohua Wang & Andrew G. Star & Rajesh K. Ahluwalia, 2023. "Performance of Polymer Electrolyte Membrane Water Electrolysis Systems: Configuration, Stack Materials, Turndown and Efficiency," Energies, MDPI, vol. 16(13), pages 1-17, June.
    8. Rauls, Edward & Hehemann, Michael & Keller, Roger & Scheepers, Fabian & Müller, Martin & Stolten, Detlef, 2023. "Favorable Start-Up behavior of polymer electrolyte membrane water electrolyzers," Applied Energy, Elsevier, vol. 330(PA).
    9. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    10. Frank Gambou & Damien Guilbert & Michel Zasadzinski & Hugues Rafaralahy, 2022. "A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity," Energies, MDPI, vol. 15(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    2. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    3. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    4. Bernd Emonts & Martin Müller & Michael Hehemann & Holger Janßen & Roger Keller & Markus Stähler & Andrea Stähler & Veit Hagenmeyer & Roland Dittmeyer & Peter Pfeifer & Simon Waczowicz & Michael Rubin , 2022. "A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling," Energies, MDPI, vol. 15(10), pages 1-24, May.
    5. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    6. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    7. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    8. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    9. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    10. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    11. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    12. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    13. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    15. Shu, Zhiyong & Liang, Wenqing & Zheng, Xiaohong & Lei, Gang & Cao, Peng & Dai, Wenxiao & Qian, Hua, 2021. "Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment," Energy, Elsevier, vol. 236(C).
    16. Xiaohua Wang & Andrew G. Star & Rajesh K. Ahluwalia, 2023. "Performance of Polymer Electrolyte Membrane Water Electrolysis Systems: Configuration, Stack Materials, Turndown and Efficiency," Energies, MDPI, vol. 16(13), pages 1-17, June.
    17. Nikolaos Chalkiadakis & Emmanuel Stamatakis & Melina Varvayanni & Athanasios Stubos & Georgios Tzamalis & Theocharis Tsoutsos, 2023. "A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System," Energies, MDPI, vol. 16(17), pages 1-20, August.
    18. Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).
    19. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    20. Dasheng Lee & Kuan-Chung Lin, 2020. "How to Transform Sustainable Energy Technology into a Unicorn Start-Up: Technology Review and Case Study," Sustainability, MDPI, vol. 12(7), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:612-:d:315077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.