IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4792-d413276.html
   My bibliography  Save this article

Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data

Author

Listed:
  • Burin Yodwong

    (Group of Research in Electrical Engineering of Nancy (GREEN), Université de Lorraine, GREEN, F-54000 Nancy, France
    Department of Teacher Training in Electrical Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand)

  • Damien Guilbert

    (Group of Research in Electrical Engineering of Nancy (GREEN), Université de Lorraine, GREEN, F-54000 Nancy, France)

  • Matheepot Phattanasak

    (Department of Teacher Training in Electrical Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand)

  • Wattana Kaewmanee

    (Department of Teacher Training in Electrical Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand)

  • Melika Hinaje

    (Group of Research in Electrical Engineering of Nancy (GREEN), Université de Lorraine, GREEN, F-54000 Nancy, France)

  • Gianpaolo Vitale

    (Institute for High Performance Computing and Networking (ICAR), National Research Council of Italy, Unit of Palermo, 90146 Palermo, Italy)

Abstract

In electrolyzers, Faraday’s efficiency is a relevant parameter to assess the amount of hydrogen generated according to the input energy and energy efficiency. Faraday’s efficiency expresses the faradaic losses due to the gas crossover current. The thickness of the membrane and operating conditions (i.e., temperature, gas pressure) may affect the Faraday’s efficiency. The developed models in the literature are mainly focused on alkaline electrolyzers and based on the current and temperature change. However, the modeling of the effect of gas pressure on Faraday’s efficiency remains a major concern. In proton exchange membrane (PEM) electrolyzers, the thickness of the used membranes is very thin, enabling decreasing ohmic losses and the membrane to operate at high pressure because of its high mechanical resistance. Nowadays, high-pressure hydrogen production is mandatory to make its storage easier and to avoid the use of an external compressor. However, when increasing the hydrogen pressure, the hydrogen crossover currents rise, particularly at low current densities. Therefore, faradaic losses due to the hydrogen crossover increase. In this article, experiments are performed on a commercial PEM electrolyzer to investigate Faraday’s efficiency based on the current and hydrogen pressure change. The obtained results have allowed modeling the effects of Faraday’s efficiency by a simple empirical model valid for the studied PEM electrolyzer stack. The comparison between the experiments and the model shows very good accuracy in replicating Faraday’s efficiency.

Suggested Citation

  • Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4792-:d:413276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Liso & Giorgio Savoia & Samuel Simon Araya & Giovanni Cinti & Søren Knudsen Kær, 2018. "Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures," Energies, MDPI, vol. 11(12), pages 1-18, November.
    2. Damien Guilbert & Gianpaolo Vitale, 2020. "Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers," Energies, MDPI, vol. 13(5), pages 1-18, March.
    3. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    4. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    5. Tjarks, Geert & Gibelhaus, Andrej & Lanzerath, Franz & Müller, Martin & Bardow, André & Stolten, Detlef, 2018. "Energetically-optimal PEM electrolyzer pressure in power-to-gas plants," Applied Energy, Elsevier, vol. 218(C), pages 192-198.
    6. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    7. Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayed-Ahmed, H. & Toldy, Á.I. & Santasalo-Aarnio, A., 2024. "Dynamic operation of proton exchange membrane electrolyzers—Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    3. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    2. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    3. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    4. Bernd Emonts & Martin Müller & Michael Hehemann & Holger Janßen & Roger Keller & Markus Stähler & Andrea Stähler & Veit Hagenmeyer & Roland Dittmeyer & Peter Pfeifer & Simon Waczowicz & Michael Rubin , 2022. "A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling," Energies, MDPI, vol. 15(10), pages 1-24, May.
    5. Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
    6. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    7. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    8. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    9. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    10. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    11. Xiaohua Wang & Andrew G. Star & Rajesh K. Ahluwalia, 2023. "Performance of Polymer Electrolyte Membrane Water Electrolysis Systems: Configuration, Stack Materials, Turndown and Efficiency," Energies, MDPI, vol. 16(13), pages 1-17, June.
    12. Hurtubia, Byron & Sauma, Enzo, 2021. "Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity," Applied Energy, Elsevier, vol. 304(C).
    13. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    14. Muntasir Shovon, Shaik & Ahamed Akash, Faysal & Abdur Rahman, Md & Rahman, Wahida & Chakraborty, Prosenjeet & Monir, Minhaj Uddin & Sarkar, Shaheen M. & Abd Aziz, Azrina & Chowdhury, Shahariar, 2024. "Advancements in hydrogen generation, storage, and utilizations: A comprehensive review of current trends in Bangladesh," Energy, Elsevier, vol. 292(C).
    15. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    16. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Hernández-Gómez, Ángel & Ramirez, Victor & Guilbert, Damien & Saldivar, Belem, 2021. "Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation," Renewable Energy, Elsevier, vol. 163(C), pages 1508-1522.
    19. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    20. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4792-:d:413276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.