IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics036054422500951x.html
   My bibliography  Save this article

Optimal operation of electric-hydrogen coupling micro-energy networks considering the self-heat-recovery

Author

Listed:
  • Quan, Dongrui
  • Xie, Haipeng
  • Li, Peixuan
  • Bie, Zhaohong

Abstract

As a green energy carrier, hydrogen is increasingly used for energy storage in micro-energy networks. However, as the core component of hydrogen energy storage, the multi-electrolyzer still encounters challenges with low energy utilization efficiency and subjective electrolyzer power distribution. Firstly, this paper proposes a multi-physics coupled dynamic model considering the self-heat-recovery of an alkaline electrolyzer (AEL). This model stores heat during the production state and supplies it to the electrolyzers during the standby state, thereby improving energy utilization efficiency. Secondly, a balanced optimization strategy was proposed to address the issue of subjective electrolyzer power distribution while ensuring balanced operation across multiple electrolyzer units. Based on the proposed multi-AEL model and the strategy, an optimal day-ahead scheduling model for the micro-energy network is formulated, aiming to minimize economic costs while incorporating a penalty term for the non-equilibrium operation of the multi-electrolyzer. Finally, the generalized Benders decomposition method is adopted to linearize the mixed integer nonlinear multi-AEL economic scheduling problem. Numerical results demonstrate that the proposed multi-AEL model considering self-recovery-heat can effectively increase the energy efficiency of AELs in the production state from 52.7 % to 77.7 %. Furthermore, the proposed strategy reduces operational fluctuations in each cell and mitigates the lifespan reduction caused by frequent fluctuations or overuse.

Suggested Citation

  • Quan, Dongrui & Xie, Haipeng & Li, Peixuan & Bie, Zhaohong, 2025. "Optimal operation of electric-hydrogen coupling micro-energy networks considering the self-heat-recovery," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500951x
    DOI: 10.1016/j.energy.2025.135309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500951X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    2. Li, Yangyang & Deng, Xintao & Zhang, Tao & Liu, Shenghui & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao & Shen, Xiaojun, 2023. "Exploration of the configuration and operation rule of the multi-electrolyzers hybrid system of large-scale alkaline water hydrogen production system," Applied Energy, Elsevier, vol. 331(C).
    3. Niknam, Taher & Khodaei, Amin & Fallahi, Farhad, 2009. "A new decomposition approach for the thermal unit commitment problem," Applied Energy, Elsevier, vol. 86(9), pages 1667-1674, September.
    4. Qiu, Yiwei & Zhou, Buxiang & Zang, Tianlei & Zhou, Yi & Chen, Shi & Qi, Ruomei & Li, Jiarong & Lin, Jin, 2023. "Extended load flexibility of utility-scale P2H plants: Optimal production scheduling considering dynamic thermal and HTO impurity effects," Renewable Energy, Elsevier, vol. 217(C).
    5. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    6. Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
    7. Zhang, Yachao & Xie, Shiwei & Shu, Shengwen, 2022. "Multi-stage robust optimization of a multi-energy coupled system considering multiple uncertainties," Energy, Elsevier, vol. 238(PC).
    8. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    9. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    10. Hu, Kewei & Fang, Jiakun & Ai, Xiaomeng & Huang, Danji & Zhong, Zhiyao & Yang, Xiaobo & Wang, Lei, 2022. "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiongzheng & Meng, Xin & Nie, Gongzhe & Li, Binghui & Yang, Haoran & He, Mingzhi, 2024. "Optimization of hydrogen production in multi-Electrolyzer systems: A novel control strategy for enhanced renewable energy utilization and Electrolyzer lifespan," Applied Energy, Elsevier, vol. 376(PB).
    2. Zhu, Yanxi & Zhang, Yixiang & Bin, Shiyu & Chen, Zeyi & Zhang, Fanhang & Gong, Shihao & Xia, Yan & Duan, Xiongbo, 2024. "Effects of key design and operating parameters on the performance of the PEM water electrolysis for hydrogen production," Renewable Energy, Elsevier, vol. 235(C).
    3. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    4. Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Wang, Jingyi & Yang, Jinbin & Feng, Yu & Hua, Jing & Chen, Zhengjian & Liao, Mei & Zhang, Jingran & Qin, Jiang, 2025. "Comparative experimental study of alkaline and proton exchange membrane water electrolysis for green hydrogen production," Applied Energy, Elsevier, vol. 379(C).
    6. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    7. Ishaq, H. & Dincer, I., 2021. "Comparative assessment of renewable energy-based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    10. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    11. Pavlos Nikolaidis & Andreas Poullikkas, 2022. "A Thorough Emission-Cost Analysis of the Gradual Replacement of Carbon-Rich Fuels with Carbon-Free Energy Carriers in Modern Power Plants: The Case of Cyprus," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    12. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    13. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    14. Zheng, Yi & Wang, Jiawei & You, Shi & Li, Ximei & Bindner, Henrik W. & Münster, Marie, 2023. "Data-driven scheme for optimal day-ahead operation of a wind/hydrogen system under multiple uncertainties," Applied Energy, Elsevier, vol. 329(C).
    15. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    16. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    17. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    18. Ahmadullah, Ahmad Bilal & Rahimi, Mohammad Amin & Ulfat, Dawood Shah & Irshad, Ahmad Shah & Doost, Ziaul Haq & Wali, Najibullah & Karimi, Bashir Ahmad, 2025. "Decarbonizing Afghanistan: The most cost-effective renewable energy system for hydrogen production," Energy, Elsevier, vol. 324(C).
    19. Wenhui Zhao & Jibin Ma & Zhanyang Wang & Youting Li & Weishi Zhang, 2022. "Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    20. Hurtubia, Byron & Sauma, Enzo, 2021. "Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity," Applied Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500951x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.