IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122007973.html
   My bibliography  Save this article

Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives

Author

Listed:
  • Qureshi, Fazil
  • Yusuf, Mohammad
  • Kamyab, Hesam
  • Vo, Dai-Viet N.
  • Chelliapan, Shreeshivadasan
  • Joo, Sang-Woo
  • Vasseghian, Yasser

Abstract

The worldwide economic development, population expansion, and technological advancements contribute to a rise in global primary energy consumption. Since fossil fuels now provide around 85% of the energy requirement, a significant quantity of greenhouse gases is released, leading to climate change. To meet the pledges of the Paris agreement, a promising and potential alternative to fossil fuels needs to be commercialised. Therefore, numerous industries recognise hydrogen (H2) as a clean and stable energy source for decarbonisation or de-fossilisation. Around 90% of the world's H2 produced is grey in nature and produced from reforming fossil-based fuels. However, the future of H2 energy lies in its green, blue, and turquoise spectra due to the carbon capture scheme and corresponding clean and sustainable H2 production methodology. The fundamental goal of this research is to learn more about various low-carbon H2 generating systems. In comparison to fossil-based H2, green H2 is a costly option. Blue H2 offers several appealing characteristics; however, the carbon capture utilisation and storage (CCUS) technology are expensive and blue H2 is not carbon-free. The current CCUS technology can only store and catch between 80 and 95% of CO2. Further, it examines worldwide actions related to the H2 development policy. In addition, a debate based on the colour spectrum of H2 was established to classify the purity of H2 generation. Further, the existing obstacles, advancements, and future directions of low-carbon H2 production technologies, including fossil fuel-based and renewable-based H2, are explored to foster the growth of the low-carbon H2 economy.

Suggested Citation

  • Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007973
    DOI: 10.1016/j.rser.2022.112916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122007973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicodemus, Julia Haltiwanger, 2018. "Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV," Energy Policy, Elsevier, vol. 120(C), pages 100-109.
    2. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    3. Nematollahi, Omid & Alamdari, Pouria & Jahangiri, Mehdi & Sedaghat, Ahmad & Alemrajabi, Ali Akbar, 2019. "A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps," Energy, Elsevier, vol. 175(C), pages 914-930.
    4. Hou, Xiaojiang & Wang, Yi & Yang, Yanling & Hu, Rui & Yang, Guang & Feng, Lei & Suo, Guoquan, 2019. "Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys," Energy, Elsevier, vol. 188(C).
    5. Mohammad Ostadi & Kristofer Gunnar Paso & Sandra Rodriguez-Fabia & Lars Erik Øi & Flavio Manenti & Magne Hillestad, 2020. "Process Integration of Green Hydrogen: Decarbonization of Chemical Industries," Energies, MDPI, vol. 13(18), pages 1-16, September.
    6. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    7. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
    8. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    9. Yilmaz, Fatih & Selbaş, Reşat, 2017. "Thermodynamic performance assessment of solar based Sulfur-Iodine thermochemical cycle for hydrogen generation," Energy, Elsevier, vol. 140(P1), pages 520-529.
    10. D'Amato, Dalia & Veijonaho, Simo & Toppinen, Anne, 2020. "Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs," Forest Policy and Economics, Elsevier, vol. 110(C).
    11. Asif Afzal & Manzoore Elahi M. Soudagar & Ali Belhocine & Mohammed Kareemullah & Nazia Hossain & Saad Alshahrani & Ahamed Saleel C. & Ram Subbiah & Fazil Qureshi & M. A. Mujtaba, 2021. "Thermal Performance of Compression Ignition Engine Using High Content Biodiesels: A Comparative Study with Diesel Fuel," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    12. Haghi, Ehsan & Raahemifar, Kaamran & Fowler, Michael, 2018. "Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid," Energy Policy, Elsevier, vol. 113(C), pages 206-222.
    13. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    14. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    15. Mikhail Dvoynikov & George Buslaev & Andrey Kunshin & Dmitry Sidorov & Andrzej Kraslawski & Margarita Budovskaya, 2021. "New Concepts of Hydrogen Production and Storage in Arctic Region," Resources, MDPI, vol. 10(1), pages 1-18, January.
    16. Luo Yu & Qing Zhu & Shaowei Song & Brian McElhenny & Dezhi Wang & Chunzheng Wu & Zhaojun Qin & Jiming Bao & Ying Yu & Shuo Chen & Zhifeng Ren, 2019. "Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    17. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    18. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    19. Scholten, Daniel & Bazilian, Morgan & Overland, Indra & Westphal, Kirsten, 2020. "The geopolitics of renewables: New board, new game," Energy Policy, Elsevier, vol. 138(C).
    20. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    21. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    22. Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
    23. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    24. Velazquez Abad, Anthony & Dodds, Paul E., 2020. "Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges," Energy Policy, Elsevier, vol. 138(C).
    25. Elkhan Richard Sadik-Zada, 2021. "Political Economy of Green Hydrogen Rollout: A Global Perspective," Sustainability, MDPI, vol. 13(23), pages 1-11, December.
    26. Bigdeli, Nooshin & Afshar, Karim & Gazafroudi, Amin Shokri & Ramandi, Mostafa Yousefi, 2013. "A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 20-29.
    27. Koto, Prosper Senyo & Yiridoe, Emmanuel K., 2019. "Expected willingness to pay for wind energy in Atlantic Canada," Energy Policy, Elsevier, vol. 129(C), pages 80-88.
    28. Giampietro, Mario, 2019. "On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth," Ecological Economics, Elsevier, vol. 162(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    2. Eleftherios Touloupakis & Angeliki Chatziathanasiou & Demetrios F. Ghanotakis & Pietro Carlozzi & Isabella Pecorini, 2022. "Hydrogen Production by Immobilized Rhodopseudomonas sp. Cells in Calcium Alginate Beads," Energies, MDPI, vol. 15(22), pages 1-11, November.
    3. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Sofia Orjuela-Abril & Ana Torregroza-Espinosa & Jorge Duarte-Forero, 2023. "Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    3. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    4. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    5. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    6. Alīna Safronova & Aiga Barisa, 2023. "Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors," Sustainability, MDPI, vol. 15(19), pages 1-37, September.
    7. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    8. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    9. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Chisalita, Dora-Andreea & Petrescu, Letitia & Cormos, Calin-Cristian, 2020. "Environmental evaluation of european ammonia production considering various hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Bellocchi, Sara & Colbertaldo, Paolo & Manno, Michele & Nastasi, Benedetto, 2023. "Assessing the effectiveness of hydrogen pathways: A techno-economic optimisation within an integrated energy system," Energy, Elsevier, vol. 263(PE).
    13. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    15. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    16. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    17. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Hernández-Gómez, Ángel & Ramirez, Victor & Guilbert, Damien & Saldivar, Belem, 2021. "Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation," Renewable Energy, Elsevier, vol. 163(C), pages 1508-1522.
    19. Lozano-Martín, Daniel & Moreau, Alejandro & Chamorro, César R., 2022. "Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models," Renewable Energy, Elsevier, vol. 198(C), pages 1398-1429.
    20. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.