IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8355-d967139.html
   My bibliography  Save this article

Hydrogen Production by Immobilized Rhodopseudomonas sp. Cells in Calcium Alginate Beads

Author

Listed:
  • Eleftherios Touloupakis

    (Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy)

  • Angeliki Chatziathanasiou

    (Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece)

  • Demetrios F. Ghanotakis

    (Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece)

  • Pietro Carlozzi

    (Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy)

  • Isabella Pecorini

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

Abstract

The present investigation concerns the potentiality of Rhodopseudomonas sp. cells to produce clean energy such as molecular hydrogen (H 2 ). The abovementioned goal could be reached by improving the capability of purple non-sulfur bacteria to produce H 2 via a photofermentative process through the enzyme nitrogenase. Rhodopseudomonas sp. cells were immobilized in calcium alginate gel beads and cultured in a cylindrical photobioreactor at a working volume of 0.22 L. The semi-continuous process, which lasted for 11 days, was interspersed with the washing of the beads with the aim of increasing the H 2 production rate. The maximum H 2 production rate reached 5.25 ± 0.93 mL/h with a total output of 505 mL. The productivity was 40.9 μL (of H 2 )/mg (of cells)/h or 10.2 mL (of H 2 )/L (of culture)/h with a light conversion efficiency of 1.20%.

Suggested Citation

  • Eleftherios Touloupakis & Angeliki Chatziathanasiou & Demetrios F. Ghanotakis & Pietro Carlozzi & Isabella Pecorini, 2022. "Hydrogen Production by Immobilized Rhodopseudomonas sp. Cells in Calcium Alginate Beads," Energies, MDPI, vol. 15(22), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8355-:d:967139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baeyens, Jan & Zhang, Huili & Nie, Jiapei & Appels, Lise & Dewil, Raf & Ansart, Renaud & Deng, Yimin, 2020. "Reviewing the potential of bio-hydrogen production by fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Eleftherios Touloupakis & Cecilia Faraloni & Ana Margarita Silva Benavides & Giuseppe Torzillo, 2021. "Recent Achievements in Microalgal Photobiological Hydrogen Production," Energies, MDPI, vol. 14(21), pages 1-17, November.
    4. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    3. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    4. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    6. Tang, Ou & Rehme, Jakob & Cerin, Pontus, 2022. "Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?," Energy, Elsevier, vol. 241(C).
    7. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Magda Dudek & Marcin Dębowski & Anna Nowicka & Joanna Kazimierowicz & Marcin Zieliński, 2022. "The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield," Resources, MDPI, vol. 11(3), pages 1-11, March.
    9. Liu, Xinxin & Zhao, Junhui & He, Chao & Liu, Liang & Li, Gang & Pan, Xiaohui & Xu, Guizhuan & Lu, Chaoyang & Zhang, Quanguo & Jiao, Youzhou, 2023. "A new approach for evaluating photosynthetic bio-hydrogen production: The dissipation rate method," Energy, Elsevier, vol. 284(C).
    10. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    11. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    13. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option towards an Environmentally Friendly Energy Transition," Energies, MDPI, vol. 13(22), pages 1-27, November.
    15. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    16. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Progress and Challenges in Biohydrogen Production," Energies, MDPI, vol. 15(15), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8355-:d:967139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.