IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7170-d670173.html
   My bibliography  Save this article

Recent Achievements in Microalgal Photobiological Hydrogen Production

Author

Listed:
  • Eleftherios Touloupakis

    (Istituto di Ricerca sugli Ecosistemi Terrestri, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy)

  • Cecilia Faraloni

    (Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy)

  • Ana Margarita Silva Benavides

    (Centro de Investigacion en Ciencias Del Mar y Limnología, Universidad de Costa Rica, San José 2060, Costa Rica
    Escuela de Biologia, Universidad de Costa Rica, San José 2060, Costa Rica)

  • Giuseppe Torzillo

    (Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
    Centro de Investigacion en Ciencias Del Mar y Limnología, Universidad de Costa Rica, San José 2060, Costa Rica)

Abstract

It is well known that over the last 60 years the trend of long-lived greenhouse gas emissions have shown a strong acceleration. There is an increasing concern and a mounting opposition by public opinion to continue with the use of fossil energy. Western countries are presently involved in a so-called energy transition with the objective of abandoning fossil energy for renewable sources. In this connection, hydrogen can play a central role. One of the sustainable ways to produce hydrogen is the use of microalgae which possess two important natural catalysts: photosystem II and hydrogenase, used to split water and to combine protons and electrons to generate gaseous hydrogen, respectively. For about 20 years of study on photobiological hydrogen production, our scientific hopes were based on the application of the sulfur protocol, which indisputably represented a very important advancement in the field of hydrogen production biotechnology. However, as reported in this review, there is increasing evidence that this strategy is not economically viable. Therefore, a change of paradigm for the photobiological production of hydrogen based on microalgae seems mandatory. This review points out that an increasing number of microalgal strains other than Chlamydomonas reinhardtii are being tested and are able to produce sustainable amount of hydrogen without nutrient starvation and to fulfill this goal including the application of co-cultures.

Suggested Citation

  • Eleftherios Touloupakis & Cecilia Faraloni & Ana Margarita Silva Benavides & Giuseppe Torzillo, 2021. "Recent Achievements in Microalgal Photobiological Hydrogen Production," Energies, MDPI, vol. 14(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7170-:d:670173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Dębowski & Magda Dudek & Marcin Zieliński & Anna Nowicka & Joanna Kazimierowicz, 2021. "Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review," Energies, MDPI, vol. 14(19), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magda Dudek & Marcin Dębowski & Anna Nowicka & Joanna Kazimierowicz & Marcin Zieliński, 2022. "The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield," Resources, MDPI, vol. 11(3), pages 1-11, March.
    2. Eleftherios Touloupakis & Angeliki Chatziathanasiou & Demetrios F. Ghanotakis & Pietro Carlozzi & Isabella Pecorini, 2022. "Hydrogen Production by Immobilized Rhodopseudomonas sp. Cells in Calcium Alginate Beads," Energies, MDPI, vol. 15(22), pages 1-11, November.
    3. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    4. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Progress and Challenges in Biohydrogen Production," Energies, MDPI, vol. 15(15), pages 1-3, July.
    5. Machineni, Lakshmi & Deepanraj, B. & Chew, Kit Wayne & Rao, A. Gangagni, 2023. "Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Jóźwiak & Urszula Filipkowska & Paulina Walczak, 2022. "The Use of Aminated Wheat Straw for Reactive Black 5 Dye Removal from Aqueous Solutions as a Potential Method of Biomass Valorization," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Mohamad Yusof Idroas & Thanh Danh Le & Huu Tho Nguyen, 2022. "Experimental Studies of Combustion and Emission Characteristics of Biomass Producer Gas (BPG) in a Constant Volume Combustion Chamber (CVCC) System," Energies, MDPI, vol. 15(21), pages 1-18, October.
    3. Magda Dudek & Marcin Dębowski & Anna Nowicka & Joanna Kazimierowicz & Marcin Zieliński, 2022. "The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield," Resources, MDPI, vol. 11(3), pages 1-11, March.
    4. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    5. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effectiveness of Hydrogen Production by Bacteroides vulgatus in Psychrophilic Fermentation of Cattle Slurry," Clean Technol., MDPI, vol. 4(3), pages 1-9, August.
    6. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Progress and Challenges in Biohydrogen Production," Energies, MDPI, vol. 15(15), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7170-:d:670173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.