IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8612-d1758009.html
   My bibliography  Save this article

Sustainable Utilization of CO 2 from Exhaust Gases for the Autotrophic Cultivation of the Biohydrogen-Producing Microalga Tetraselmis subcordiformis

Author

Listed:
  • Marcin Dębowski

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Izabela Świca

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

Abstract

The aim of the study was to evaluate the feasibility of using exhaust gases as a CO 2 source in the cultivation of Tetraselmis subcordiformis microalgae for biomass and hydrogen production. It was shown that the growth rate of T. subcordiformis biomass and its biochemical composition depended on the CO 2 source. The highest growth rate of 286 ± 15 mgVS/L-d and a final biomass concentration of 2710 ± 180 mgVS/L were achieved in the variant where exhaust gases from a coal and biomass supplementary combustion plant were the CO 2 source (V2). The highest CO 2 reduction efficiency of 90.3 ± 3.2% was achieved in the case where waste gases from biogas combustion were the CO 2 source (V1). In V2, the highest CO 2 utilization efficiency was achieved (CO 2 UE = 46.7 ± 2.4%). Analyzing the biomass composition confirmed differences in total carbon content (TC) and polysaccharide fraction. The highest H 2 production efficiency and rate, which were 70.9 ± 2.7 mL/gVS and 2.27 ± 0.08 mL/gVS·h, respectively, were obtained in V2. The results obtained indicate the possibility of integrating fuel combustion processes with the cultivation of T. subcordiformis and photobiological H 2 production, which is a promising solution in the context of climate neutrality and the implementation of circular economy postulates. This approach demonstrates a sustainable strategy for linking industrial CO 2 emissions with the production of renewable biohydrogen and thus contributes to climate protection and the promotion of circular economy concepts.

Suggested Citation

  • Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca & Marcin Zieliński, 2025. "Sustainable Utilization of CO 2 from Exhaust Gases for the Autotrophic Cultivation of the Biohydrogen-Producing Microalga Tetraselmis subcordiformis," Sustainability, MDPI, vol. 17(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8612-:d:1758009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Dębowski & Magda Dudek & Marcin Zieliński & Anna Nowicka & Joanna Kazimierowicz, 2021. "Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review," Energies, MDPI, vol. 14(19), pages 1-27, September.
    2. Shashirekha Viswanaathan & Pitchurajan Krishna Perumal & Seshadri Sundaram, 2022. "Integrated Approach for Carbon Sequestration and Wastewater Treatment Using Algal–Bacterial Consortia: Opportunities and Challenges," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
    3. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    4. João Gonçalves & Jorge Freitas & Igor Fernandes & Pedro Silva, 2023. "Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    5. Marcin Zieliński & Łukasz Barczak & Paulina Rusanowska & Anna Nowicka & Marcin Dębowski, 2025. "Microbial Fuel Cells as CO 2 Source in the Autotrophic Cultivation of the Green Microalgae Tetraselmis subcordiformis : Impact on Biomass Growth, Nutrient Removal, and Hydrogen Production," Energies, MDPI, vol. 18(4), pages 1-19, February.
    6. Wioleta Babiak & Izabela Krzemińska, 2021. "Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes," Energies, MDPI, vol. 14(13), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    2. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Energy Quality of Corn Biomass from Gasoline-Contaminated Soils Remediated with Sorbents," Energies, MDPI, vol. 17(21), pages 1-18, October.
    3. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    4. Tomasz Jóźwiak & Urszula Filipkowska & Paulina Walczak, 2022. "The Use of Aminated Wheat Straw for Reactive Black 5 Dye Removal from Aqueous Solutions as a Potential Method of Biomass Valorization," Energies, MDPI, vol. 15(17), pages 1-19, August.
    5. Pasan Dunuwila & Enoka Munasinghe & V. H. L. Rodrigo & Wenjing T. Gong & Ichiro Daigo & Naohiro Goto, 2025. "Revealing the Environmental Footprint of Crepe Rubber Production: A Comprehensive Life Cycle Assessment of a Crepe Rubber Factory in Sri Lanka," Sustainability, MDPI, vol. 17(3), pages 1-20, February.
    6. Sujit Kumar Nayak & Pratap Bhattacharyya & Soumya Ranjan Padhy & Anubhav Das & Shiva Prasad Parida & Monalisha Rath & Anweshita Nayak, 2025. "Harnessing the potential of microalgae for carbon sequestration to achieve net-zero emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 30(7), pages 1-35, October.
    7. Agampodi Gihan S. D. De Silva & Z K. Hashim & Wogene Solomon & Jun-Bin Zhao & Györgyi Kovács & István M. Kulmány & Zoltán Molnár, 2024. "Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation," Agriculture, MDPI, vol. 14(11), pages 1-33, November.
    8. Song, Wenlu & He, Yu & Huang, Rui & Li, Jianfeng & Yu, Yujie & Xia, Peng, 2023. "Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production," Applied Energy, Elsevier, vol. 335(C).
    9. Guilherme Anacleto dos Reis & Walter Jose Martínez-Burgos & Roberta Pozzan & Yenis Pastrana Puche & Diego Ocán-Torres & Pedro de Queiroz Fonseca Mota & Cristine Rodrigues & Josilene Lima Serra & Thama, 2024. "Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks," Sustainability, MDPI, vol. 16(19), pages 1-33, October.
    10. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effectiveness of Hydrogen Production by Bacteroides vulgatus in Psychrophilic Fermentation of Cattle Slurry," Clean Technol., MDPI, vol. 4(3), pages 1-9, August.
    11. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Mohamad Yusof Idroas & Thanh Danh Le & Huu Tho Nguyen, 2022. "Experimental Studies of Combustion and Emission Characteristics of Biomass Producer Gas (BPG) in a Constant Volume Combustion Chamber (CVCC) System," Energies, MDPI, vol. 15(21), pages 1-18, October.
    12. Eleftherios Touloupakis & Cecilia Faraloni & Ana Margarita Silva Benavides & Giuseppe Torzillo, 2021. "Recent Achievements in Microalgal Photobiological Hydrogen Production," Energies, MDPI, vol. 14(21), pages 1-17, November.
    13. Nilay Kumar Sarker & Prasad Kaparaju, 2024. "Microalgal Bioeconomy: A Green Economy Approach Towards Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 16(24), pages 1-45, December.
    14. Ana-Maria Gălan & Alexandru Vlaicu & Alin Cristian Nicolae Vintilă & Mihaela Cîlţea-Udrescu & Georgiana Cerchezan & Adriana Nicoleta Frone & Gabriel Vasilievici & Anca Paulenco, 2022. "Microalgae Strain Porphyridium purpureum for Nutrient Reduction in Dairy Wastewaters," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    15. Abhishek Anand & Kaustubh Tripathi & Amit Kumar & Suresh Gupta & Smita Raghuvanshi & Sanjay Kumar Verma, 2021. "Bio-Mitigation of Carbon Dioxide Using Desmodesmus sp. in the Custom-Designed Pilot-Scale Loop Photobioreactor," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    16. Magda Dudek & Marcin Dębowski & Anna Nowicka & Joanna Kazimierowicz & Marcin Zieliński, 2022. "The Effect of Autotrophic Cultivation of Platymonas subcordiformis in Waters from the Natural Aquatic Reservoir on Hydrogen Yield," Resources, MDPI, vol. 11(3), pages 1-11, March.
    17. Barbara Frąszczak & Monika Kula-Maximenko & Caihua Li, 2024. "The Suitability of Algae Solution in Pea Microgreens Cultivation under Different Light Intensities," Agriculture, MDPI, vol. 14(10), pages 1-16, September.
    18. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Progress and Challenges in Biohydrogen Production," Energies, MDPI, vol. 15(15), pages 1-3, July.
    19. Chen, Hao & Dong, Sheying & Zhang, Yaojun & He, Panyang, 2022. "A comparative study on energy efficient CO2 capture using amine grafted solid sorbent: Materials characterization, isotherms, kinetics and thermodynamics," Energy, Elsevier, vol. 239(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8612-:d:1758009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.