IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v335y2023ics0306261923001228.html
   My bibliography  Save this article

Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production

Author

Listed:
  • Song, Wenlu
  • He, Yu
  • Huang, Rui
  • Li, Jianfeng
  • Yu, Yujie
  • Xia, Peng

Abstract

A life-cycle assessment was carried out to evaluate the industrial feasibility of deep eutectic solvents (DES) for microalgae pretreatment. The effects of DES on hydrothermal disintegration (HTD) of microalgae for biodiesel and biogas co-production was assessed in terms of net energy ratio (NER, Energy input/Energy output) and greenhouse gas (GHG) emissions. Although the addition of DES during HTD increased the energy output by 36.33 %, the NER increased from 0.65 to 0.83 due to the larger increase in energy input. The increase in energy input is because DES synthesis consumed a lot of energy, accounting for 45.93 % of the total energy input. The addition of DES also increased the net GHG emissions from −25.53 g CO2-eq MJ−1 to 26.04 g CO2-eq MJ−1. It is essential to reduce the GHG emissions and energy consumption via DES recovery for commercial applications. When DES was recovered by a combined method of membrane filtration and recrystallization, a low NER of 0.58 along with negative net GHG emissions were achieved for microalgal biofuel production via DES-HTD.

Suggested Citation

  • Song, Wenlu & He, Yu & Huang, Rui & Li, Jianfeng & Yu, Yujie & Xia, Peng, 2023. "Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production," Applied Energy, Elsevier, vol. 335(C).
  • Handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001228
    DOI: 10.1016/j.apenergy.2023.120758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    2. Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
    3. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    4. Wang, Juan & Zhang, Sulan & Zhang, Qingjun, 2021. "The relationship of renewable energy consumption to financial development and economic growth in China," Renewable Energy, Elsevier, vol. 170(C), pages 897-904.
    5. Qinqin Xia & Chaoji Chen & Yonggang Yao & Jianguo Li & Shuaiming He & Yubing Zhou & Teng Li & Xuejun Pan & Yuan Yao & Liangbing Hu, 2021. "Author Correction: A strong, biodegradable and recyclable lignocellulosic bioplastic," Nature Sustainability, Nature, vol. 4(9), pages 830-830, September.
    6. Nagarajan, Dillirani & Varjani, Sunita & Lee, Duu-Jong & Chang, Jo-Shu, 2021. "Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    8. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    9. Qinqin Xia & Chaoji Chen & Yonggang Yao & Jianguo Li & Shuaiming He & Yubing Zhou & Teng Li & Xuejun Pan & Yuan Yao & Liangbing Hu, 2021. "A strong, biodegradable and recyclable lignocellulosic bioplastic," Nature Sustainability, Nature, vol. 4(7), pages 627-635, July.
    10. Ju, Chao & Wang, Feng & Huang, Yong & Fang, Yunming, 2018. "Selective extraction of neutral lipid from wet algae paste and subsequently hydroconversion into renewable jet fuel," Renewable Energy, Elsevier, vol. 118(C), pages 521-526.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyuan Fang & Xingyi Lyu & Tian Tong & Aniqa Ibnat Lim & Tao Li & Jiming Bao & Yun Hang Hu, 2023. "Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Braud, L. & McDonnell, K. & Murphy, F., 2023. "Environmental life cycle assessment of algae systems: Critical review of modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    5. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yugang He & Chunlei Wang, 2022. "Does Buddhist Tourism Successfully Result in Local Sustainable Development?," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    7. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    8. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    10. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Ding, Yuanyi, 2023. "Does natural resources cause sustainable financial development or resources curse? Evidence from group of seven economies," Resources Policy, Elsevier, vol. 81(C).
    12. Alvydas Zagorskis & Regimantas Dauknys & Mantas Pranskevičius & Olha Khliestova, 2023. "Research on Biogas Yield from Macroalgae with Inoculants at Different Organic Loading Rates in a Three-Stage Bioreactor," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    13. Lin, Chia-Yang & Chau, Ka Yin & Tran, Trung Kien & Sadiq, Muhammad & Van, Le & Hien Phan, Thi Thu, 2022. "Development of renewable energy resources by green finance, volatility and risk: Empirical evidence from China," Renewable Energy, Elsevier, vol. 201(P1), pages 821-831.
    14. Yanli Ji & Jie Xue & Zitian Fu, 2022. "Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    15. Li, Jiaman & Dong, Xiucheng & Dong, Kangyin, 2022. "How much does financial inclusion contribute to renewable energy growth? Ways to realize green finance in China," Renewable Energy, Elsevier, vol. 198(C), pages 760-771.
    16. Zhiwen Zhou & Yiming Lai & Qin Peng & Jun Li, 2021. "Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries," Energies, MDPI, vol. 14(19), pages 1-18, October.
    17. Elvis D. Achuo & Pilag B.C. Kakeu & Simplice A. Asongu, 2023. "Financial development, human capital and energy transition: A global comparative analysis," Working Papers of the African Governance and Development Institute. 23/005, African Governance and Development Institute..
    18. Swikriti Khadke & Pragya Gupta & Shanmukh Rachakunta & Chandreswar Mahata & Suma Dawn & Mohit Sharma & Deepak Verma & Aniruddha Pradhan & Ambati Mounika Sai Krishna & Seeram Ramakrishna & Sabyasachi C, 2021. "Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    19. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    20. Oluwatoyin Abidemi Somoye & Mehdi Seraj & Huseyin Ozdeser & Muhammad Mar’I, 2023. "Quantile relationship between financial development, income, price, CO2 emissions and renewable energy consumption: evidence from Nigeria," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.