IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59834-8.html
   My bibliography  Save this article

On-demand, readily degradable Poly-2,3-dihydrofuran enabled by anion-binding catalytic copolymerization

Author

Listed:
  • Zhen Zhang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Wenxiu Lv

    (Chinese Academy of Sciences)

  • Maosheng Li

    (Chinese Academy of Sciences)

  • Yanchao Wang

    (Chinese Academy of Sciences)

  • Xianhong Wang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Youhua Tao

    (Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

Copolymerization with cleavable comonomers is a versatile approach to generate vinyl polymer with viable end-of-life options such as biodegradability. Nevertheless, such a strategy is ineffective in producing readily degradable 2, 3-dihydrofuran (DHF) copolymer with high-molecular-weight (>200 kDa). The latter is a strong and biorenewable thermoplastic that eluded efficient cationic copolymerization synthesis. Here, we show that an anion-binding catalyst seleno-cyclodiphosph(V)azanes enable the efficient cationic copolymerization with cyclic acetals by reversibly activating both different dormant species to achieve both high living chain-end retention and high-molecular-weight. This method leads to incorporating low density of individual in-chain acetal sequences in PDHF chains with high-molecular-weight (up to 314 kDa), imparting on-demand hydrolytic degradability while without sacrificing the thermomechanical, optical, and barrier properties of the native material. The proposed approach can be easily adapted to existing cationic polymerization to synthesize readily degradable polymers with tailored properties while addressing environmental sustainability requirements.

Suggested Citation

  • Zhen Zhang & Wenxiu Lv & Maosheng Li & Yanchao Wang & Xianhong Wang & Youhua Tao, 2025. "On-demand, readily degradable Poly-2,3-dihydrofuran enabled by anion-binding catalytic copolymerization," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59834-8
    DOI: 10.1038/s41467-025-59834-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59834-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59834-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peyton Shieh & Wenxu Zhang & Keith E. L. Husted & Samantha L. Kristufek & Boya Xiong & David J. Lundberg & Jet Lem & David Veysset & Yuchen Sun & Keith A. Nelson & Desiree L. Plata & Jeremiah A. Johns, 2020. "Publisher Correction: Cleavable comonomers enable degradable, recyclable thermoset plastics," Nature, Nature, vol. 585(7823), pages 4-4, September.
    2. Tobias O. Morgen & Maximilian Baur & Inigo Göttker-Schnetmann & Stefan Mecking, 2020. "Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Qi Dong & Aditya Dilip Lele & Xinpeng Zhao & Shuke Li & Sichao Cheng & Yueqing Wang & Mingjin Cui & Miao Guo & Alexandra H. Brozena & Ying Lin & Tangyuan Li & Lin Xu & Aileen Qi & Ioannis G. Kevrekidi, 2023. "Depolymerization of plastics by means of electrified spatiotemporal heating," Nature, Nature, vol. 616(7957), pages 488-494, April.
    4. Ainara Sangroniz & Jian-Bo Zhu & Xiaoyan Tang & Agustin Etxeberria & Eugene Y.-X. Chen & Haritz Sardon, 2019. "Packaging materials with desired mechanical and barrier properties and full chemical recyclability," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Qinqin Xia & Chaoji Chen & Yonggang Yao & Jianguo Li & Shuaiming He & Yubing Zhou & Teng Li & Xuejun Pan & Yuan Yao & Liangbing Hu, 2021. "Author Correction: A strong, biodegradable and recyclable lignocellulosic bioplastic," Nature Sustainability, Nature, vol. 4(9), pages 830-830, September.
    6. Hongyuan Lu & Daniel J. Diaz & Natalie J. Czarnecki & Congzhi Zhu & Wantae Kim & Raghav Shroff & Daniel J. Acosta & Bradley R. Alexander & Hannah O. Cole & Yan Zhang & Nathaniel A. Lynd & Andrew D. El, 2022. "Machine learning-aided engineering of hydrolases for PET depolymerization," Nature, Nature, vol. 604(7907), pages 662-667, April.
    7. Qinqin Xia & Chaoji Chen & Yonggang Yao & Jianguo Li & Shuaiming He & Yubing Zhou & Teng Li & Xuejun Pan & Yuan Yao & Liangbing Hu, 2021. "A strong, biodegradable and recyclable lignocellulosic bioplastic," Nature Sustainability, Nature, vol. 4(7), pages 627-635, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyuan Fang & Xingyi Lyu & Tian Tong & Aniqa Ibnat Lim & Tao Li & Jiming Bao & Yun Hang Hu, 2023. "Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Liu, Zhi-Hua & Liu, He & Xu, Tao & Zhao, Zhi-Min & Ragauskas, Arthur J. & Li, Bing-Zhi & Yuan, Joshua S. & Yuan, Ying-Jin, 2025. "Lignin valorization reshapes sustainable biomass refining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    3. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Fei Nie & Dongpeng Yan, 2024. "Bio-sourced flexible supramolecular glasses for dynamic and full-color phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    7. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Song, Wenlu & He, Yu & Huang, Rui & Li, Jianfeng & Yu, Yujie & Xia, Peng, 2023. "Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production," Applied Energy, Elsevier, vol. 335(C).
    9. Nariê Rinke Dias de Souza & Marisa Groenestege & Jurjen Spekreijse & Cláudia Ribeiro & Cristina T. Matos & Massimo Pizzol & Francesco Cherubini, 2024. "Challenges and opportunities toward a sustainable bio‐based chemical sector in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    10. Chaofan Zhou & Hongjie Gao & Saiyu Bu & Haotian Wu & Fan Liang & Fangfang Li & Zhaoning Hu & Yixuan Zhao & Bingbing Guo & Zelong Li & Li Yin & Xiaokai Hu & Qin Xie & Yang Su & Zhongfan Liu & Li Lin, 2025. "Principles for fabricating moisture barrier films via stacked Janus graphene layers," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Yimin Mao & Peihua Ma & Tangyuan Li & He Liu & Xinpeng Zhao & Shufeng Liu & Xiaoxue Jia & Shaik O. Rahaman & Xizheng Wang & Minhua Zhao & Gang Chen & Hua Xie & Alexandra H. Brozena & Bin Zhou & Yaguan, 2024. "Flash heating process for efficient meat preservation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Swikriti Khadke & Pragya Gupta & Shanmukh Rachakunta & Chandreswar Mahata & Suma Dawn & Mohit Sharma & Deepak Verma & Aniruddha Pradhan & Ambati Mounika Sai Krishna & Seeram Ramakrishna & Sabyasachi C, 2021. "Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    13. Xinlei Wei & Xue Yang & Congcong Hu & Qiangzi Li & Qianqian Liu & Yue Wu & Leipeng Xie & Xiao Ning & Fei Li & Tao Cai & Zhiguang Zhu & Yi-Heng P. Job Zhang & Yanfei Zhang & Xuejun Chen & Chun You, 2024. "ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Ren Wei & Peter Westh & Gert Weber & Lars M. Blank & Uwe T. Bornscheuer, 2025. "Standardization guidelines and future trends for PET hydrolase research," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Wang, Jia & Wen, Mengyuan & La, Xinru & Ren, Jurong & Jiang, Jianchun & Tsang, Daniel C.W., 2024. "Resonance-driven microwave heating for improved methane conversion to hydrogen," Applied Energy, Elsevier, vol. 375(C).
    16. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Javier M. Hernández-Sancho & Arnaud Boudigou & Maria V. G. Alván-Vargas & Dekel Freund & Jenny Arnling Bååth & Peter Westh & Kenneth Jensen & Lianet Noda-García & Daniel C. Volke & Pablo I. Nikel, 2024. "A versatile microbial platform as a tunable whole-cell chemical sensor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Nan Zheng & Yongchao Cai & Zehua Zhang & Huimin Zhou & Yu Deng & Shuang Du & Mai Tu & Wei Fang & Xiaole Xia, 2025. "Tailoring industrial enzymes for thermostability and activity evolution by the machine learning-based iCASE strategy," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Teng Bao & Yuanchao Qian & Yongping Xin & James J. Collins & Ting Lu, 2023. "Engineering microbial division of labor for plastic upcycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59834-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.