IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33283-z.html
   My bibliography  Save this article

Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers

Author

Listed:
  • Erfan Oliaei

    (RISE Bioeconomy and health
    KTH Royal Institute of Technology)

  • Peter Olsén

    (KTH Royal Institute of Technology)

  • Tom Lindström

    (RISE Bioeconomy and health)

  • Lars A. Berglund

    (KTH Royal Institute of Technology)

Abstract

Unbleached wood fibers and nanofibers are environmentally friendly bio-based candidates for material production, in particular, as reinforcements in polymer matrix biocomposites due to their low density and potential as carbon sink during the materials production phase. However, producing high reinforcement content biocomposites with degradable or chemically recyclable matrices is troublesome. Here, we address this issue with a new concept for facile and scalable in-situ polymerization of polyester matrices based on functionally balanced oligomers in pre-formed lignocellulosic networks. The idea enabled us to create high reinforcement biocomposites with well-dispersed mechanically undamaged fibers or nanocellulose. These degradable biocomposites have much higher mechanical properties than analogs in the literature. Reinforcement geometry (fibers at 30 µm or fibrils at 10–1000 nm diameter) influenced the polymerization and degradation of the polyester matrix. Overall, this work opens up new pathways toward environmentally benign materials in the context of a circular bioeconomy.

Suggested Citation

  • Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33283-z
    DOI: 10.1038/s41467-022-33283-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33283-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33283-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunqing Zhu & Charles Romain & Charlotte K. Williams, 2016. "Sustainable polymers from renewable resources," Nature, Nature, vol. 540(7633), pages 354-362, December.
    2. Qing-Fang Guan & Huai-Bin Yang & Zi-Meng Han & Zhang-Chi Ling & Shu-Hong Yu, 2020. "An all-natural bioinspired structural material for plastic replacement," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Liang Yuan & Leman Buzoglu Kurnaz & Chuanbing Tang, 2021. "Alternative plastics," Nature Sustainability, Nature, vol. 4(10), pages 837-838, October.
    4. Walter R. Stahel, 2016. "The circular economy," Nature, Nature, vol. 531(7595), pages 435-438, March.
    5. Qinqin Xia & Chaoji Chen & Yonggang Yao & Jianguo Li & Shuaiming He & Yubing Zhou & Teng Li & Xuejun Pan & Yuan Yao & Liangbing Hu, 2021. "Author Correction: A strong, biodegradable and recyclable lignocellulosic bioplastic," Nature Sustainability, Nature, vol. 4(9), pages 830-830, September.
    6. Jiajia Zheng & Sangwon Suh, 2019. "Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(5), pages 374-378, May.
    7. Chelsea M. Rochman & Mark Anthony Browne & Benjamin S. Halpern & Brian T. Hentschel & Eunha Hoh & Hrissi K. Karapanagioti & Lorena M. Rios-Mendoza & Hideshige Takada & Swee Teh & Richard C. Thompson, 2013. "Classify plastic waste as hazardous," Nature, Nature, vol. 494(7436), pages 169-171, February.
    8. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    9. Qinqin Xia & Chaoji Chen & Yonggang Yao & Jianguo Li & Shuaiming He & Yubing Zhou & Teng Li & Xuejun Pan & Yuan Yao & Liangbing Hu, 2021. "A strong, biodegradable and recyclable lignocellulosic bioplastic," Nature Sustainability, Nature, vol. 4(7), pages 627-635, July.
    10. Jiajia Zheng & Sangwon Suh, 2019. "Publisher Correction: Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    2. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    3. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    4. Daniel Holzer & Claudia Mair-Bauernfeind & Michael Kriechbaum & Romana Rauter & Tobias Stern, 2023. "Different but the Same? Comparing Drivers and Barriers for Circular Economy Innovation Systems in Wood- and Plastic-Based Industries," Circular Economy and Sustainability, Springer, vol. 3(2), pages 983-1011, June.
    5. Magdalena Klotz & Melanie Haupt & Stefanie Hellweg, 2023. "Potentials and limits of mechanical plastic recycling," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1043-1059, August.
    6. Marvin Bachmann & Christian Zibunas & Jan Hartmann & Victor Tulus & Sangwon Suh & Gonzalo Guillén-Gosálbez & André Bardow, 2023. "Towards circular plastics within planetary boundaries," Nature Sustainability, Nature, vol. 6(5), pages 599-610, May.
    7. Mulvaney, Dustin & Richards, Ryan M. & Bazilian, Morgan D. & Hensley, Erin & Clough, Greg & Sridhar, Seetharaman, 2021. "Progress towards a circular economy in materials to decarbonize electricity and mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. N. O. Kapustin & D. A. Grushevenko, 2023. "Assessment of Long-Term Prospects for Demand in the Plastics Market in the Face of Industry Transformation," Studies on Russian Economic Development, Springer, vol. 34(2), pages 243-253, April.
    9. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Gilbert Moyen Massa & Vasiliki-Maria Archodoulaki, 2024. "An Imported Environmental Crisis: Plastic Mismanagement in Africa," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    11. David Duindam, 2022. "Transitioning to Sustainable Healthcare: Decarbonising Healthcare Clinics, a Literature Review," Challenges, MDPI, vol. 13(2), pages 1-20, December.
    12. Chrysanthos Maraveas, 2020. "Environmental Sustainability of Plastic in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-15, July.
    13. Siyuan Fang & Xingyi Lyu & Tian Tong & Aniqa Ibnat Lim & Tao Li & Jiming Bao & Yun Hang Hu, 2023. "Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Halayit Abrha & Jonnathan Cabrera & Yexin Dai & Muhammad Irfan & Abrham Toma & Shipu Jiao & Xianhua Liu, 2022. "Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    16. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    17. Bauer, Fredric & Fontenit, Germain, 2021. "Plastic dinosaurs – Digging deep into the accelerating carbon lock-in of plastics," Energy Policy, Elsevier, vol. 156(C).
    18. Aditya Chidepatil & Prabhleen Bindra & Devyani Kulkarni & Mustafa Qazi & Meghana Kshirsagar & Krishnaswamy Sankaran, 2020. "From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste?," Administrative Sciences, MDPI, vol. 10(2), pages 1-16, April.
    19. Anna Tenhunen-Lunkka & Tom Rommens & Ive Vanderreydt & Lars Mortensen, 2023. "Greenhouse Gas Emission Reduction Potential of European Union’s Circularity Related Targets for Plastics," Circular Economy and Sustainability, Springer, vol. 3(1), pages 475-510, March.
    20. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33283-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.