Application of Machine Learning in Fuel Cell Research
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pang, Ran & Zhang, Caizhi & Dai, Haifeng & Bai, Yunfeng & Hao, Dong & Chen, Jinrui & Zhang, Bin, 2022. "Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters," Applied Energy, Elsevier, vol. 305(C).
- Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
- Lü, Xueqin & Deng, Ruiyu & Chen, Chao & Wu, Yinbo & Meng, Ruidong & Long, Liyuan, 2022. "Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation," Applied Energy, Elsevier, vol. 316(C).
- Weiwei Huo & Weier Li & Chao Sun & Qiang Ren & Guoqing Gong, 2022. "Research on Fuel Cell Fault Diagnosis Based on Genetic Algorithm Optimization of Support Vector Machine," Energies, MDPI, vol. 15(6), pages 1-15, March.
- Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
- Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Jemei, Samir & Giraud, Alain & Rosini, Sebastien, 2016. "Online implementation of SVM based fault diagnosis strategy for PEMFC systems," Applied Energy, Elsevier, vol. 164(C), pages 284-293.
- Barzegari, Mohammad Mahdi & Rahgoshay, Seyed Majid & Mohammadpour, Lliya & Toghraie, Davood, 2019. "Performance prediction and analysis of a dead-end PEMFC stack using data-driven dynamic model," Energy, Elsevier, vol. 188(C).
- Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
- Pourrahmani, Hossein & Siavashi, Majid & Moghimi, Mahdi, 2019. "Design optimization and thermal management of the PEMFC using artificial neural networks," Energy, Elsevier, vol. 182(C), pages 443-459.
- Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
- Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
- Morando, S. & Jemei, S. & Hissel, D. & Gouriveau, R. & Zerhouni, N., 2017. "ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 283-294.
- Perng, Shiang-Wuu & Wu, Horng-Wen, 2015. "A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC," Applied Energy, Elsevier, vol. 143(C), pages 81-95.
- Bicer, Y. & Dincer, I. & Aydin, M., 2016. "Maximizing performance of fuel cell using artificial neural network approach for smart grid applications," Energy, Elsevier, vol. 116(P1), pages 1205-1217.
- Aristide Giuliano & Massimiliano Errico & Hamid Salehi & Pasquale Avino, 2022. "Environmental Impact Assessment by Green Processes," IJERPH, MDPI, vol. 19(23), pages 1-4, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hristo Ivanov Beloev & Stanislav Radikovich Saitov & Antonina Andreevna Filimonova & Natalia Dmitrievna Chichirova & Egor Sergeevich Mayorov & Oleg Evgenievich Babikov & Iliya Krastev Iliev, 2025. "Solid Oxide Fuel Cell Voltage Prediction by a Data-Driven Approach," Energies, MDPI, vol. 18(9), pages 1-24, April.
- Li, Zheng & Yu, Jie & Wang, Chen & Bello, Idris Temitope & Yu, Na & Chen, Xi & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model," Applied Energy, Elsevier, vol. 365(C).
- Jiaping Xie & Hao Yuan & Yufeng Wu & Chao Wang & Xuezhe Wei & Haifeng Dai, 2023. "Impedance Acquisition of Proton Exchange Membrane Fuel Cell Using Deeper Learning Network," Energies, MDPI, vol. 16(14), pages 1-18, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
- Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
- Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
- Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
- Tian, Lei & Gao, Yan & Yang, Haiyu & Wang, Renkang, 2025. "Multi-scenario long-term degradation prediction of PEMFC based on generative inference informer model," Applied Energy, Elsevier, vol. 377(PA).
- Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
- Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
- Lei Pan & Tong Zhang & Yuan Gao, 2023. "Real-Time Control of Gas Supply System for a PEMFC Cold-Start Based on the MADDPG Algorithm," Energies, MDPI, vol. 16(12), pages 1-20, June.
- Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
- Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
- Benaggoune, Khaled & Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine, 2022. "A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 313(C).
- Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
- Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Deng, Shutong & Zhang, Jun & Zhang, Caizhi & Luo, Mengzhu & Ni, Meng & Li, Yu & Zeng, Tao, 2022. "Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model," Applied Energy, Elsevier, vol. 327(C).
- Santos, Diogo F.M. & Ferreira, Rui B. & Falcão, D.S. & Pinto, A.M.F.R., 2022. "Evaluation of a fuel cell system designed for unmanned aerial vehicles," Energy, Elsevier, vol. 253(C).
- Lingling Lv & Pucheng Pei & Peng Ren & He Wang & Geng Wang, 2025. "Exploring Performance Degradation of Proton Exchange Membrane Fuel Cells Based on Diffusion Transformer Model," Energies, MDPI, vol. 18(5), pages 1-22, February.
- Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
- Wang, Fu-Kwun & Kebede, Getnet Awoke & Lo, Shih-Che & Woldegiorgis, Bereket Haile, 2024. "An embedding layer-based quantum long short-term memory model with transfer learning for proton exchange membrane fuel stack remaining useful life prediction," Energy, Elsevier, vol. 308(C).
- Zhang, Tian & Hou, Zhengmeng & Li, Xiaoqin & Chen, Qianjun & Wang, Qichen & Lüddeke, Christian & Wu, Lin & Wu, Xuning & Sun, Wei, 2025. "A novel multivariable prognostic approach for PEMFC degradation and remaining useful life prediction using random forest and temporal convolutional network," Applied Energy, Elsevier, vol. 385(C).
- Yu, Yulong & Zheng, Qiang & Zhang, Tianyi & Li, Zhengyan & Chen, Lei & Tao, Wen-Quan, 2025. "Forecasting the output performance of PEMFCs via a novel deep learning framework considering varying operating conditions and time scales," Applied Energy, Elsevier, vol. 389(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4390-:d:1158816. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.