IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2443-d1652694.html
   My bibliography  Save this article

A Multi-Objective Temperature Control Method for a Multi-Stack Fuel Cell System with Different Stacks Based on Model Predictive Control

Author

Listed:
  • Wei Shen

    (School of Intelligent Manufacturing, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
    College of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Hongtao Su

    (School of Intelligent Manufacturing, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
    Shanghai Tongtao Technology Co., Ltd., Shanghai 201805, China)

  • Jianhua Gao

    (College of Automotive Studies, Tongji University, Shanghai 201804, China
    Research Institute of Highway Ministry of Transport, Beijing 100088, China)

  • Lei Fan

    (School of Intelligent Manufacturing, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
    College of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Gang Zhang

    (Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China)

  • Su Zhou

    (School of Intelligent Manufacturing, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
    College of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

The multi-stack fuel cell system (MFCS) has advantages such as a wide range, long life, and high efficiency; however, its multiple heat sources impose higher requirements on the thermal management system, especially for different stacks. In order to control each stack temperature in an MFCS, the model predictive control (MPC) algorithm based on the backpropagation (BP) neural network is proposed. Firstly, dynamic characteristics have been obtained experimentally for selected PEMFC stacks of different powers. Based on experimental data, a parallel multi-stack fuel cell thermal management subsystem with different stack powers model is established and a system prediction model of the BP neural network is trained by applying the MFCS thermal management subsystem model simulation data. Then, the step response matrix of the system prediction model is obtained at typical operating conditions, and a dynamic matrix controller (DMC) is designed. Finally, a test operating condition is designed for simulation analysis. The results show that the DMC based on BP neural network can quickly and accurately control each stack temperature of the MFCS, while having the characteristics of small overshoot and short regulation time.

Suggested Citation

  • Wei Shen & Hongtao Su & Jianhua Gao & Lei Fan & Gang Zhang & Su Zhou, 2025. "A Multi-Objective Temperature Control Method for a Multi-Stack Fuel Cell System with Different Stacks Based on Model Predictive Control," Energies, MDPI, vol. 18(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2443-:d:1652694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    2. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).
    3. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    2. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    3. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    4. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    5. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    6. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    8. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    9. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    10. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    12. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    13. Kofler, Sandro & Jakubek, Stefan & Hametner, Christoph, 2025. "Predictive energy management strategy with optimal stack start/stop control for fuel cell vehicles," Applied Energy, Elsevier, vol. 377(PB).
    14. Xiaoqing Cao & Hongyu Guo & Ying Han & Menggang Li & Changshuai Shang & Rui Zhao & Qizheng Huang & Ming Li & Qinghua Zhang & Fan Lv & Hao Tan & Zhengyi Qian & Mingchuan Luo & Shaojun Guo, 2025. "Sandwiching intermetallic Pt3Fe and ionomer with porous N-doped carbon layers for oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    15. Xian, Lei & Li, Zhengyan & Wang, Qiuyu & Lv, Shuangyu & Li, Shuchang & Yu, Yulong & Chen, Lei & Tao, Wen-Quan, 2025. "Atomic-scale insights into the structure-activity relationship between water transport and water phase structure in proton exchange membranes with deposited Pt particles," Applied Energy, Elsevier, vol. 381(C).
    16. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    17. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    18. Yang, Chao & Li, Zepeng & Wang, Yanfeng & Miao, He & Yuan, Jinliang, 2024. "Multiphysics analysis of flow uniformity and stack/manifold configuration in a kilowatt-class multistack solid oxide electrolysis cell module," Energy, Elsevier, vol. 307(C).
    19. Hoang Nghia Vu & Dinh Hoang Trinh & Dat Truong Le Tri & Sangseok Yu, 2023. "Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-17, October.
    20. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2024. "Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design," Applied Energy, Elsevier, vol. 362(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2443-:d:1652694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.