IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123010091.html
   My bibliography  Save this article

Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack

Author

Listed:
  • Bai, Xingying
  • Jian, Qifei

Abstract

To mitigate the parasitic power consumption caused by conventional air and water cooling, this study proposes a novel passive cooling scheme that integrates vapor chambers into proton exchange membrane fuel cell stack for thermal management. A 1.32 mm thick vapor chamber is designed and fabricated, and its heat transfer performance is verified through tests conducted at different powers using a heating pad. After confirming that vapor chambers can meet the heat dissipation requirements, the output characteristics of the stack coupled with vapor chambers, are experimentally evaluated during both fast start-up and steady-state operation. Results demonstrate that the vapor chamber efficiently operates at a heat flux density of only 0.052 W/cm2 at evaporation section, while maintaining a maximum in-plane temperature difference of 2.6 °C at 48 W. During fast start-up loading of the stack from 0 A to 40 A, the vapor chamber exhibits rapid thermal response and excellent temperature uniformity, preventing stack performance degradation due to improper operating temperatures. Compared to a general air-cooled stack, the stack coupled with vapor chambers exhibits a significant 21.7% improvement in stack voltage. These results systematically demonstrate the feasibility of vapor chambers for the thermal management of air-cooled proton exchange membrane fuel cell stacks.

Suggested Citation

  • Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123010091
    DOI: 10.1016/j.renene.2023.119095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De las Heras, A. & Vivas, F.J. & Segura, F. & Redondo, M.J. & Andújar, J.M., 2018. "Air-cooled fuel cells: Keys to design and build the oxidant/cooling system," Renewable Energy, Elsevier, vol. 125(C), pages 1-20.
    2. Guerrero Moreno, Nayibe & Cisneros Molina, Myriam & Gervasio, Dominic & Pérez Robles, Juan Francisco, 2015. "Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 897-906.
    3. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    5. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    6. Shusheng Xiong & Zhankuan Wu & Wei Li & Daize Li & Teng Zhang & Yu Lan & Xiaoxuan Zhang & Shuyan Ye & Shuhao Peng & Zeyu Han & Jiarui Zhu & Qiujie Song & Zhixiao Jiao & Xiaofeng Wu & Heqing Huang, 2021. "Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    7. Ashrafi, Moosa & Shams, Mehrzad, 2017. "The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels," Applied Energy, Elsevier, vol. 208(C), pages 1083-1096.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    2. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    5. Yan, Wei-Mon & Lin, Jian-Cheng & Chen, Chen-Yu & Amani, Mohammad, 2023. "Performance evaluation of TiN/Ti coatings on the aluminum alloy bipolar plates for PEM fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    6. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    7. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    8. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    9. Haibo Huo & Jiajie Chen & Ke Wang & Fang Wang & Guangzhe Jin & Fengxiang Chen, 2023. "State Estimation of Membrane Water Content of PEMFC Based on GA-BP Neural Network," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    10. Ji-Seong Kim & Keon-Soo Kim & Do-Young Kim & Min Heo & Kap-Seung Choi, 2022. "Effect of Rotational Control for Accelerating Water Discharge on the Performance of a Circular Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(8), pages 1-14, April.
    11. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    12. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    13. Minsoo Choi & Wongwan Jung & Sanghyuk Lee & Taehwan Joung & Daejun Chang, 2021. "Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers," Energies, MDPI, vol. 14(15), pages 1-23, July.
    14. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).
    15. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    16. Song, Ke & Fan, Zhixin & Hu, Xiao & Ding, Yuhang & Li, Haiyang & Xu, Hongjie & Zhang, Tong, 2021. "Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells," Energy, Elsevier, vol. 223(C).
    17. Hao Huang & Hua Ding & Donghai Hu & Zhaoxu Cheng & Chengyun Qiu & Yuran Shen & Xiangwen Su, 2023. "Thermal Performance Optimization of Multiple Circuits Cooling System for Fuel Cell Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    18. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Yang, Liu & Cao, Chenxi & Gan, Quanquan & Pei, Hao & Zhang, Qi & Li, Ping, 2022. "Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model," Applied Energy, Elsevier, vol. 312(C).
    20. Zhi Chen & Yanfeng Xing & Juyong Cao & Fuyong Yang & Xiaobing Zhang, 2023. "Leakage Analysis of PEMFC Sealing System Considering Temperature Cycling," Energies, MDPI, vol. 16(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123010091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.