IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925003034.html
   My bibliography  Save this article

Experimental design and assessment of a novel mixed-cooling proton exchange membrane fuel cells stack for enhanced power generation and thermal management

Author

Listed:
  • Yang, Mingguang
  • Quan, Zhenhua
  • Wang, Lincheng
  • Chang, Zejian
  • Zhao, Yaohua
  • Xing, Lei
  • Xuan, Jin

Abstract

In this study, a novel mixed-cooling proton exchange membrane fuel cells (PEMFCs) stack is proposed and fabricated, which has been specially tailored with an efficient mixed cooling pathway. Compared with conventional air-cooled stacks and previous-generation split-cooling stacks equipped with micro heat pipe arrays, the mixed-cooling stack achieves higher load capacity, improved power generation performance, and superior thermal performance. In addition, the mixed-cooling stack is configured with fewer fans, resulting in lower additional power consumption and a more uniform voltage distribution. The experimental results indicate that the load capacity of the mixed-cooling stack is 14.3 % higher than that of the split-cooling stack and shows a 71.4 % increase compared to the ordinary air-cooled PEMFC stack of the same specification. At the same current, the net power output of the mixed-cooling stack is 65.9 W higher than that of the split-cooling stack. When operating at 30 A, the maximum voltage difference for a single cell within the mixed-cooling stack is only 0.100 V, and the voltage uniformity index is 70.2 % lower than that of the split-cooling stack. Furthermore, the temperature uniform index of the mixed-cooling stack is superior to that of the split-cooling stack under identical current conditions.

Suggested Citation

  • Yang, Mingguang & Quan, Zhenhua & Wang, Lincheng & Chang, Zejian & Zhao, Yaohua & Xing, Lei & Xuan, Jin, 2025. "Experimental design and assessment of a novel mixed-cooling proton exchange membrane fuel cells stack for enhanced power generation and thermal management," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003034
    DOI: 10.1016/j.apenergy.2025.125573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amirfazli, Amir & Asghari, Saeed & Sarraf, Mohammad, 2018. "An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack," Energy, Elsevier, vol. 145(C), pages 141-151.
    2. Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
    3. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    4. Atyabi, Seyed Ali & Afshari, Ebrahim & Shakarami, Negar, 2023. "Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels," Energy, Elsevier, vol. 263(PA).
    5. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).
    6. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    7. Chen, Xi & Gu, Bin & Feng, Wentao & Tan, Jingying & Kong, Xiangzhong & Li, Shi & Chen, Yiyu & Wan, Zhongmin, 2024. "Research on control strategy of PEMFC air supply system for power and efficiency improvement," Energy, Elsevier, vol. 304(C).
    8. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    9. Shen, Jun & Du, Changqing & Yan, Fuwu & Chen, Ben & Tu, Zhengkai, 2022. "Experimental study on the dynamic performance of a power system with dual air-cooled PEMFC stacks," Applied Energy, Elsevier, vol. 326(C).
    10. Luo, Lizhong & Huang, Bi & Bai, Xingying & Cheng, Zongyi & Jian, Qifei, 2020. "Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers," Applied Energy, Elsevier, vol. 270(C).
    11. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2025. "An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design," Applied Energy, Elsevier, vol. 377(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    2. Yu, Xianxian & Cai, Shanshan & Tu, Zhengkai & Chan, Siew Hwa, 2024. "Stack-level analysis of the performance variation in air-cooled PEMFC with Z-type anode manifold," Energy, Elsevier, vol. 305(C).
    3. Fan, Lixin & Tu, Zhengkai & Cai, Shanshan & Miao, Bin & Ding, Ovi Lian & Chen, Yongtao & Chan, Siew Hwa, 2025. "Design principles and analysis of manifold design in a large-scale PEMFC stack," Energy, Elsevier, vol. 319(C).
    4. Tu, Xikai & Lv, Jin & Wu, Jin & Luo, Xiaobing & Tu, Zhengkai, 2025. "Experimental investigation of a novel open cathode air-cooled fuel cell stack design featuring simultaneous inlet blowing and outlet suction," Energy, Elsevier, vol. 314(C).
    5. Zhao, Jing & Cheng, Xinxuan & Ma, Yongkang & Zhong, Zixun & Zhou, Caiting & Lv, Youfu & Xie, Baoshan & Li, Chuanchang, 2025. "Experimental study on heat and mass transfer enhancement of open cathode proton exchange membrane fuel cells using turbulence grids," Applied Energy, Elsevier, vol. 385(C).
    6. Najmi, Aezid-Ul-Hassan & Wahab, Abdul & Prakash, Rohith & Schopen, Oliver & Esch, Thomas & Shabani, Bahman, 2025. "Thermal management of fuel cell-battery electric vehicles: Challenges and solutions," Applied Energy, Elsevier, vol. 387(C).
    7. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    8. Weng, Fang-Bor & Dlamini, Mangaliso Menzi & Tirumalasetti, Pandu Ranga & Hwang, Jenn-Jiang, 2024. "Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells," Renewable Energy, Elsevier, vol. 226(C).
    9. Yang, Yuchen & Wu, Zhen & Wang, Bofei & Yao, Jing & Yang, Fusheng & Zhang, Zaoxiao & Ren, Jianwei, 2024. "Efficient water recovery and power generation system based on air-cooled fuel cell with semi-closed cathode circulation mode," Applied Energy, Elsevier, vol. 364(C).
    10. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    11. Li, Yuyang & Liu, Enhai & Peng, Ming & Shen, Wei, 2025. "The theoretical model of thermal resistance for flat-plate CLPHP and its heat transfer performance in PEMFC cooling," Energy, Elsevier, vol. 315(C).
    12. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2025. "An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design," Applied Energy, Elsevier, vol. 377(PB).
    13. Ho-Van, Phuc & Lim, Ocktaeck, 2025. "Natural TPMS porous architectures for flow-field patterns to improve mass transport in high current density operations of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 381(C).
    14. Sun, Feng & Ma, Zhihui & Xin, Shenghai & Fang, Yixing & Wang, Zhen & Su, Dandan & Li, Ping & Qu, Xuanhui, 2025. "Porous lattice type flow field enable more uniform gas distribution and higher power density of proton exchange membrane fuel cell," Energy, Elsevier, vol. 320(C).
    15. Zhou, Kehan & Zhang, Gonghe & Bai, Haifei & Wang, Yiming & Qi, Mingjing & Huang, Jianmei & Liu, Zhiwei & Yan, Xiaojun, 2025. "The flight verification of an integrated propulsion system powered by PEMFCs with direct airflow intake design," Applied Energy, Elsevier, vol. 377(PA).
    16. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    17. Stefanos Tzelepis & Kosmas A. Kavadias & George E. Marnellos, 2023. "A Three-Dimensional Simulation Model for Proton Exchange Membrane Fuel Cells with Conventional and Bimetallic Catalyst Layers," Energies, MDPI, vol. 16(10), pages 1-26, May.
    18. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    19. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    20. Tao, Xingxiao & Zeng, Zhen & Gao, Wei & Yan, Changzhi & Liu, Huaiyu & Sun, Kai & Che, Zhizhao & Wang, Tianyou, 2025. "Experimental study of cold start of PEM fuel cell with non-uniform metal foam flow field," Applied Energy, Elsevier, vol. 389(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.