IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018671.html
   My bibliography  Save this article

An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design

Author

Listed:
  • Zhu, Kai-Qi
  • Ding, Quan
  • Zhang, Ben-Xi
  • Xu, Jiang-Hai
  • Yang, Yan-Ru
  • Lee, Duu-Jong
  • Wan, Zhong-Min
  • Wang, Xiao-Dong

Abstract

The convoluted heat and mass coupling transfer phenomena and uneven physical field distribution in air-cooled proton exchange membrane fuel cells (PEMFCs) critically affect their power density and water-thermal management. As a crucial component, the cathode flow field is vital for fuel management, heat dissipation, and water transport of air-cooled PEMFC. Refining the flow field design is a key strategy to approach the above challenges. In this study, an innovative bamboo-shaped flow field is proposed and experimentally verified in a 25 cm2 single cell, which proves its effectiveness in boosting the heat-mass transfer capacity and power density of air-cooled PEMFC. Also, it reduces fuel supply energy costs. Meanwhile, a three-dimensional multiphase numerical model is applied to explore the coupled transfer mechanisms and distribution features of liquid water, reactant, and heat under this design. Experimental results show that, at a high load of 0.65 A cm−2, the novel design increases pumping power by 17.8 % compared to the conventional parallel flow field. Despite this, it accomplishes a 5.45 % enhancement in power density and a 4.17 % rise in energy efficiency. Besides, it exhibited superior cooling efficiency and effectively mitigated localized hot spots within the cell. Numerical analysis shows that the segmental acceleration effect and the vortex regions within the bamboo-shaped design are the key factors to improve cell performance. It alleviates the issues of dehydration of the porous electrode and decreased mass transfer capability caused by high airflow velocity gradients. Further, the high heat transfer entropy region caused by the bamboo joint structure elevates the heat dissipation in porous electrodes. Simultaneously, the design also boosts the reactant distribution uniformity in the porous electrode.

Suggested Citation

  • Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2025. "An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018671
    DOI: 10.1016/j.apenergy.2024.124484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
    2. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    3. Zhao, Chen & Wang, Fei, 2023. "Optimal performance and modeling study of air-cooled proton exchange membrane fuel cell with various bipolar plate structure," Applied Energy, Elsevier, vol. 345(C).
    4. Atyabi, Seyed Ali & Afshari, Ebrahim & Shakarami, Negar, 2023. "Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels," Energy, Elsevier, vol. 263(PA).
    5. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    6. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    7. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).
    8. Baik, Kyung Don & Yang, Seong Ho, 2020. "Development of cathode cooling fins with a multi-hole structure for open-cathode polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 279(C).
    9. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    10. Song, Ke & Fan, Zhixin & Hu, Xiao & Ding, Yuhang & Li, Haiyang & Xu, Hongjie & Zhang, Tong, 2021. "Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells," Energy, Elsevier, vol. 223(C).
    11. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).
    12. Kim, Bosung & Lee, Yongtaek & Woo, Ahyoung & Kim, Yongchan, 2013. "Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs," Applied Energy, Elsevier, vol. 111(C), pages 441-448.
    13. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    14. Mortazavi, Mehdi & Tajiri, Kazuya, 2015. "Two-phase flow pressure drop in flow channels of proton exchange membrane fuel cells: Review of experimental approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 296-317.
    15. Yang, Yupeng & Jia, Haijuan & Liu, Zhi & Bai, Nan & Zhang, Xiaolai & Cao, Tong & Zhang, Jie & Zhao, Pengbing & He, Xiaocong, 2022. "Overall and local effects of operating parameters on water management and performance of open-cathode PEM fuel cells," Applied Energy, Elsevier, vol. 315(C).
    16. Wu, Lizhen & An, Liang & Jiao, Daokuan & Xu, Yifan & Zhang, Guobin & Jiao, Kui, 2022. "Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    2. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    4. Wu, Y. & Xu, L. & Zhou, S. & Yang, J. & Kockelmann, W. & Han, Y. & Li, Q. & Chen, W. & Coppens, M.-O. & Shearing, P.R. & Brett, D.J.L. & Jervis, R., 2024. "Water management and mass transport of a fractal metal foam flow-field based polymer electrolyte fuel cell using operando neutron imaging," Applied Energy, Elsevier, vol. 364(C).
    5. Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on the cold-start performance of a gas heating assisted air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 234(C).
    6. Shen, Jun & Du, Changqing & Yan, Fuwu & Chen, Ben & Tu, Zhengkai, 2022. "Experimental study on the dynamic performance of a power system with dual air-cooled PEMFC stacks," Applied Energy, Elsevier, vol. 326(C).
    7. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Zhang, Jikai & Wang, Changjian & Zhang, Aifeng, 2022. "Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment," Applied Energy, Elsevier, vol. 311(C).
    9. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).
    10. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    11. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    12. Becker, F. & Cosse, C. & Gentner, C. & Schulz, D. & Liphardt, L., 2024. "Novel electrochemical and thermodynamic conditioning approaches and their evaluation for open cathode PEM-FC stacks," Applied Energy, Elsevier, vol. 363(C).
    13. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    14. Sun, Dahan & Liu, Zhongyan, 2024. "Performance and economic study of a novel high-efficiency PEMFC vehicle thermal management system applied for cold conditions," Energy, Elsevier, vol. 305(C).
    15. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    16. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    17. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    18. Ma, Haoran & Liu, Junheng & Liang, Wenwen & Li, Jiyu & Zhao, Wenyao & Sun, Ping & Ji, Qian, 2024. "Effects of PEMFC cooling channel insulation coating on heat transfer and electrical discharge characteristics of nanofluid coolants," Applied Energy, Elsevier, vol. 357(C).
    19. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    20. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.