IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123007966.html
   My bibliography  Save this article

Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell

Author

Listed:
  • Zhao, Chen
  • Li, Baozhu
  • Zhang, Lu
  • Han, Yaru
  • Wu, Xiaoyu

Abstract

Air-cooled open-cathode proton exchange membrane fuel cells are miniature but effective energy conversion devices for both the mobile power station and unmanned equipment applications. However, the structure of the air-cooled open-cathode proton exchange membrane fuel cells still needs to be optimized to improve the system compactness and cell performance. In this study, an annular structure is designed, which offers a more uniform air velocity profile, higher air pressure difference, as well as more uniform temperature distribution with a minimum temperature gradient. Benefiting from the optimized annular structure, the assembly of the annular stack has an internal air duct, which could not only reduces the volume and weight of the stack, but also allocates the air more evenly. Results further indicate that the annular design increases the uniformity of velocity and temperature by around 3 times compared with traditional rectangular stack, it contributes significantly to the fuel cell performance by a 15% increase in power. This study provides an efficient strategy to improve the performance and extend the system reliability for future engineering application.

Suggested Citation

  • Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123007966
    DOI: 10.1016/j.renene.2023.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sasmito, Agus P. & Kurnia, Jundika C. & Shamim, Tariq & Mujumdar, Arun S., 2017. "Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method," Applied Energy, Elsevier, vol. 185(P2), pages 1225-1232.
    2. Thomas, Sobi & Bates, Alex & Park, Sam & Sahu, A.K. & Lee, Sang C. & Son, Byung Rak & Kim, Joo Gon & Lee, Dong-Ha, 2016. "An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 765-776.
    3. Zhao, Chen & Xing, Shuang & Liu, Wei & Chen, Ming & Wang, Haijiang, 2021. "Performance and thermal optimization of different length-width ratio for air-cooled open-cathode fuel cell," Renewable Energy, Elsevier, vol. 178(C), pages 1250-1260.
    4. Qiu, Diankai & Peng, Linfa & Tang, Jiayu & Lai, Xinmin, 2020. "Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels," Energy, Elsevier, vol. 198(C).
    5. Henriques, T. & César, B. & Branco, P.J. Costa, 2010. "Increasing the efficiency of a portable PEM fuel cell by altering the cathode channel geometry: A numerical and experimental study," Applied Energy, Elsevier, vol. 87(4), pages 1400-1409, April.
    6. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Shuang & Zhao, Chen & Zou, Jiexin & Zaman, Shahid & Yu, Yang & Gong, Hongwei & Wang, Yajun & Chen, Ming & Wang, Min & Lin, Meng & Wang, Haijiang, 2022. "Recent advances in heat and water management of forced-convection open-cathode proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    3. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    4. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).
    5. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    6. Baik, Kyung Don & Yang, Seong Ho, 2020. "Development of cathode cooling fins with a multi-hole structure for open-cathode polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 279(C).
    7. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    8. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    9. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    10. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    11. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    12. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    13. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    14. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    15. Xuexia Zhang & Zixuan Yu & Weirong Chen, 2019. "Life Prediction Based on D-S ELM for PEMFC," Energies, MDPI, vol. 12(19), pages 1-15, September.
    16. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    17. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    18. Saka, Kenan & Orhan, Mehmet Fatih, 2022. "Analysis of stack operating conditions for a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 258(C).
    19. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    20. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123007966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.