IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000167.html
   My bibliography  Save this article

The theoretical model of thermal resistance for flat-plate CLPHP and its heat transfer performance in PEMFC cooling

Author

Listed:
  • Li, Yuyang
  • Liu, Enhai
  • Peng, Ming
  • Shen, Wei

Abstract

The temperature control and uniformity are important factors that determine the coupling efficiency of the flat-plate closed loop pulse heat pipe (CLPHP) integrated zero carbon proton exchange membrane fuel cell (PEMFC) cooling. Based on the structural features of the flat-plate CLPHP and the thermodynamic properties of the working fluid, a theoretical model for axial heat transfer resistance is established. The calculation accuracy of the segmented and integral thermal resistance models is compared through experiments. Additionally, it determines the effect of the surface heat transfer coefficient in the condensation section on the heat transfer power of the CLPHP as well as the transverse and longitudinal working temperatures of the PEMFC. The results indicate that increasing the thermal conductivity of the flat-plate CLPHP shell and reducing the flow resistance of the vapor-liquid working fluid can enhance its heat transfer power. Additionally, the segmented heat transfer resistance model exhibits a higher calculation accuracy; The integration of the flat-plate CLPHP into the PEMFC bipolar plate ensures the ideal operating temperature and temperature uniformity of the PEMFC. Fins can be added to enhance the surface heat transfer coefficient of the condensation section of the flat-plate CLPHP, meeting the cooling requirements of multiple single cells.

Suggested Citation

  • Li, Yuyang & Liu, Enhai & Peng, Ming & Shen, Wei, 2025. "The theoretical model of thermal resistance for flat-plate CLPHP and its heat transfer performance in PEMFC cooling," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000167
    DOI: 10.1016/j.energy.2025.134374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
    2. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    3. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
    4. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    5. Ying Da Wang & Quentin Meyer & Kunning Tang & James E. McClure & Robin T. White & Stephen T. Kelly & Matthew M. Crawford & Francesco Iacoviello & Dan J. L. Brett & Paul R. Shearing & Peyman Mostaghimi, 2023. "Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Li, Chengjie & Wang, Zixuan & Liu, He & Guo, Fafu & Xiu, Xinyan & Qin, Jiang & Wei, Liqiu, 2023. "4E analysis of a novel proton exchange membrane fuel cell/engine based cogeneration system with methanol fuel for ship application," Energy, Elsevier, vol. 282(C).
    7. Guichet, Valentin & Delpech, Bertrand & Khordehgah, Navid & Jouhara, Hussam, 2022. "Experimental and theoretical investigation of the influence of heat transfer rate on the thermal performance of a multi-channel flat heat pipe," Energy, Elsevier, vol. 250(C).
    8. Yang, Luo & Nik-Ghazali, Nik-Nazri & Ali, Mohammed A.H. & Chong, Wen Tong & Yang, Zhenzhong & Liu, Haichao, 2023. "A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Wan, Zhongmin & Yan, Hanzhang & Sun, Yun & Yang, Chen & Chen, Xi & Kong, Xiangzhong & Chen, Yiyu & Tu, Zhengkai & Wang, Xiaodong, 2023. "Thermal management improvement of air-cooled proton exchange membrane fuel cell by using metal foam flow field," Applied Energy, Elsevier, vol. 333(C).
    10. Zhao, Jing & Cheng, Xinxuan & Zhou, Caiting & Gan, Lang & Chen, Kang & Chen, Chao & Jian, Qifei, 2024. "Effect of vapor chamber on thermo-electrical characteristics of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 360(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2025. "An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design," Applied Energy, Elsevier, vol. 377(PB).
    2. Zhao, Jing & Cheng, Xinxuan & Ma, Yongkang & Zhong, Zixun & Zhou, Caiting & Lv, Youfu & Xie, Baoshan & Li, Chuanchang, 2025. "Experimental study on heat and mass transfer enhancement of open cathode proton exchange membrane fuel cells using turbulence grids," Applied Energy, Elsevier, vol. 385(C).
    3. Sun, Feng & Ma, Zhihui & Xin, Shenghai & Fang, Yixing & Wang, Zhen & Su, Dandan & Li, Ping & Qu, Xuanhui, 2025. "Porous lattice type flow field enable more uniform gas distribution and higher power density of proton exchange membrane fuel cell," Energy, Elsevier, vol. 320(C).
    4. Yang, Mingguang & Quan, Zhenhua & Wang, Lincheng & Chang, Zejian & Zhao, Yaohua & Xing, Lei & Xuan, Jin, 2025. "Experimental design and assessment of a novel mixed-cooling proton exchange membrane fuel cells stack for enhanced power generation and thermal management," Applied Energy, Elsevier, vol. 386(C).
    5. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    6. Li, Rui & Jia, Zijiao & Sun, Xiaohua & Li, Jinping & Zhai, Panpan & Novakovic, Vojislav, 2025. "Performance analysis of different flow rates and dust accumulation in micro heat pipe PV/T series system," Renewable Energy, Elsevier, vol. 241(C).
    7. Tang, Wei & Chang, Guofeng & Xie, Jiaping & Wang, Chao & Shen, Jun & Pan, Xiangmin & Du, Daochang & Liu, Zhaoming & Yuan, Hao & Wei, Xuezhe & Dai, Haifeng, 2024. "A new insight into the in-plane heterogeneity of commercial-sized fuel cells via a novel probability distribution-based method," Applied Energy, Elsevier, vol. 368(C).
    8. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    9. Poškas, Robertas & Sirvydas, Arūnas & Mingilaitė, Laura & Poškas, Povilas & Jouhara, Hussam, 2024. "Investigation of effect of cooling water characteristics on flue gas condensation along vertical tube heat exchanger," Energy, Elsevier, vol. 289(C).
    10. Yi Ding & Qiang Guo & Wenyuan Guo & Wenxiao Chu & Qiuwang Wang, 2024. "Review of Recent Applications of Heat Pipe Heat Exchanger Use for Waste Heat Recovery," Energies, MDPI, vol. 17(11), pages 1-28, May.
    11. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    12. Tao, Xingxiao & Zeng, Zhen & Gao, Wei & Yan, Changzhi & Liu, Huaiyu & Sun, Kai & Che, Zhizhao & Wang, Tianyou, 2025. "Experimental study of cold start of PEM fuel cell with non-uniform metal foam flow field," Applied Energy, Elsevier, vol. 389(C).
    13. Russo, Danilo & Portarapillo, Maria & Turco, Maria & Di Benedetto, Almerinda, 2025. "Towards H2-free shipboard storage: Energetic and risk analysis of oxidative methanol steam reforming in integrated fuel cell systems," Energy, Elsevier, vol. 320(C).
    14. Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Comprehensive performance assessment of photovoltaic/thermal system using MWCNT/water nanofluid and novel finned multi-block nano-enhanced phase change material-based thermal collector: Energy, exergy," Energy, Elsevier, vol. 312(C).
    15. Sayed, Enas Taha & Alami, Abdul Hai & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Kamarudin, Siti Kartom & Olabi, A.G., 2024. "Real direct urea fuel Fell operation using standalone Ni-based metal-organic framework prepared by ball mill at room temperature," Energy, Elsevier, vol. 305(C).
    16. Li, Xue & Chen, Ken & Pei, Yu & Chen, Shuyi & Zhou, Hai & Ren, Zhongyi & Tang, Lin & Yu, Qiongwan & Feng, Junsheng & Pei, Gang, 2024. "Heat loss and energy efficiency investigation of vacuum flat plate photovoltaic/thermal collectors," Renewable Energy, Elsevier, vol. 235(C).
    17. Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2024. "Optimization and comparative evaluation of novel marine engines integrated with fuel cells using sustainable fuel choices," Energy, Elsevier, vol. 301(C).
    18. Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on the cold-start performance of a gas heating assisted air-cooled proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 234(C).
    19. Ouyang, Tiancheng & Tan, Xianlin & Tuo, Xiaoyu & Qin, Peijia & Mo, Chunlan, 2024. "Performance analysis and multi-objective optimization of a novel CCHP system integrated energy storage in large seagoing vessel," Renewable Energy, Elsevier, vol. 224(C).
    20. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.