IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2716-d551525.html
   My bibliography  Save this article

A Novel Surface Parameterization Method for Optimizing Radial Impeller Design in Fuel Cell System

Author

Listed:
  • Wei Li

    (School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jisheng Liu

    (School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Pengcheng Fang

    (School of Mechanical Engineering & Automation, Beihang University, Beijing 100091, China)

  • Jinxin Cheng

    (Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The aerodynamic performance improvement of radial impellers is of positive significance to improve the overall performance of hydrogen fuel cell systems (FCS). Our team proposes a multi-degree-of-freedom (MDOF) surface parameterization method for the global automatic optimization of radial impeller aerodynamics. The MDOF surface parameterization is characterized by fewer variables, construction ease, smoothness, good flexibility, and blade strength maintenance. In this paper, a radial impeller for a 100-kW fuel cell stack is optimized, showing the isentropic efficiency increase of 0.7%, the flow rate increase of 3.77%, and the total pressure ratio increase of 0.37%. The results revealed that the performance of the optimized radial impeller significantly improved, verifying the validity and reliability of the proposed novel design optimization method and providing technical support and methodological research of radial impeller aerodynamic optimization for hydrogen FCS.

Suggested Citation

  • Wei Li & Jisheng Liu & Pengcheng Fang & Jinxin Cheng, 2021. "A Novel Surface Parameterization Method for Optimizing Radial Impeller Design in Fuel Cell System," Energies, MDPI, vol. 14(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2716-:d:551525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Ekradi, Khalil & Madadi, Ali, 2020. "Performance improvement of a transonic centrifugal compressor impeller with splitter blade by three-dimensional optimization," Energy, Elsevier, vol. 201(C).
    3. Xiaojian Li & Zhengxian Liu & Yujing Lin, 2017. "Multipoint and Multiobjective Optimization of a Centrifugal Compressor Impeller Based on Genetic Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-18, October.
    4. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    5. Mohammad Omidi & Shu-Jie Liu & Soheil Mohtaram & Hui-Tian Lu & Hong-Chao Zhang, 2019. "Improving Centrifugal Compressor Performance by Optimizing the Design of Impellers Using Genetic Algorithm and Computational Fluid Dynamics Methods," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Bicchi & Michele Marconcini & Ernani Fulvio Bellobuono & Elisabetta Belardini & Lorenzo Toni & Andrea Arnone, 2023. "Multi-Point Surrogate-Based Approach for Assessing Impacts of Geometric Variations on Centrifugal Compressor Performance," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    3. Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
    4. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    6. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    7. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    8. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    10. Silvio Barbarelli & Vincenzo Pisano & Mario Amelio, 2022. "Development of a Predicting Model for Calculating the Geometry and the Characteristic Curves of Pumps Running as Turbines in Both Operating Modes," Energies, MDPI, vol. 15(7), pages 1-28, April.
    11. Rong Huang & Jimin Ni & Houchuan Fan & Xiuyong Shi & Qiwei Wang, 2023. "Investigating a New Method-Based Internal Joint Operation Law for Optimizing the Performance of a Turbocharger Compressor," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    12. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    13. Rong Xie & Muyan Chen & Weihuang Liu & Hongfei Jian & Yanjun Shi, 2021. "Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    14. Mamdouh Alshammari & Fuhaid Alshammari & Apostolos Pesyridis, 2019. "Electric Boosting and Energy Recovery Systems for Engine Downsizing," Energies, MDPI, vol. 12(24), pages 1-33, December.
    15. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    16. Chen, Weixiong & Qian, Yiran & Tang, Xin & Fang, Huawei & Yi, Jingwei & Liang, Tiebo & Zhao, Quanbin & Yan, Junjie, 2023. "System-component combined design and comprehensive evaluation of closed-air Brayton cycle," Energy, Elsevier, vol. 278(C).
    17. Muhammad Saeed & Abdallah S. Berrouk & Burhani M. Burhani & Ahmed M. Alatyar & Yasser F. Al Wahedi, 2021. "Turbine Design and Optimization for a Supercritical CO 2 Cycle Using a Multifaceted Approach Based on Deep Neural Network," Energies, MDPI, vol. 14(22), pages 1-27, November.
    18. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
    20. Ahmad Najjaran & Saleh Meibodi & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Experimentally Validated Modelling of an Oscillating Diaphragm Compressor for Chemisorption Energy Technology Applications," Energies, MDPI, vol. 16(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2716-:d:551525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.