IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v237y2021ics0360544221017783.html
   My bibliography  Save this article

Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment

Author

Listed:
  • Zhou, Xin
  • Yan, Hao
  • Sun, Zongzhuang
  • Feng, Xiang
  • Zhao, Hui
  • Liu, Yibin
  • Chen, Xiaobo
  • Yang, Chaohe

Abstract

The efficient utilization of waste cooking oil (WCO) in petrochemical and high-quality gasoline production could reduce food safety issues and boost the new energy industry's sustainable development. The co-processing of WCO, vacuum gas oil, and light cycle oil (LCO) by the fluid catalytic cracking unit could achieve process integration, which exhibits promising economic prospects for manufacturing large amounts of low-cost petrochemicals. Herein, we proposed a novel process, i.e., hierarchical LCO hydrotreating combined with two-stage riser catalytic cracking processes (HTMP-plus). Based on industrial test data, the process model of HTMP-plus was first developed on the Aspen HYSYS Petroleum Refining platform and optimized operating parameters were conducted. In this novel process, lighter LCO fractions were directly recycled to the second riser reactor, and heavier LCO fractions were fed into the selective hydrotreating unit. This strategy intensified the conversion of WCO and LCO, reduced hydrogen consumption, and improved the economic benefit. Furthermore, the life cycle society-environment evaluation was performed. Compared with the conventional HTMP process, the HTMP-plus process could produce 5% more propylene and high-quality gasoline for every ton of mixed feedstock and provide up to a 31% increase in net present value. Moreover, the HTMP-plus process consumes approximately 5% less non-renewable energy and discharges 2% less CO2 equivalent and 16% less wastewater based on one-million-USD dollars total output value.

Suggested Citation

  • Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017783
    DOI: 10.1016/j.energy.2021.121530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    2. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    3. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    4. Tang, Yuanjun & Dong, Jun & Li, Guoneng & Zheng, Youqu & Chi, Yong & Nzihou, Ange & Weiss-Hortala, Elsa & Ye, Chao, 2020. "Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China," Energy, Elsevier, vol. 205(C).
    5. Le-Phuc, Nguyen & Tran, Tri V. & Phan, Thien T. & Ngo, Phuong T. & Ha, Quan L.M. & Luong, Thuy N. & Tran, Thinh H. & Phan, Tuan T., 2021. "High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils," Renewable Energy, Elsevier, vol. 168(C), pages 57-63.
    6. Li, Guoxuan & Wang, Shuai & Zhao, Jiangang & Qi, Huaqing & Ma, Zhaoyuan & Cui, Peizhe & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong, 2020. "Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming," Energy, Elsevier, vol. 199(C).
    7. Chen, Yu-Kai & Hsieh, Chung-Hung & Wang, Wei-Cheng, 2020. "The production of renewable aviation fuel from waste cooking oil. Part II: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products," Renewable Energy, Elsevier, vol. 157(C), pages 731-740.
    8. Wang, Yan & Cao, Yang & Li, Jin, 2018. "Preparation of biofuels with waste cooking oil by fluid catalytic cracking: The effect of catalyst performance on the products," Renewable Energy, Elsevier, vol. 124(C), pages 34-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Shi & Zedong Teng & Jianwei Liu & Tinggang Li, 2022. "Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic Pseudomonas aeruginosa WO2," IJERPH, MDPI, vol. 19(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
    2. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    3. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    4. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    5. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    8. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    9. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    10. Le-Phuc, Nguyen & Tran, Tri V. & Phan, Thien T. & Ngo, Phuong T. & Ha, Quan L.M. & Luong, Thuy N. & Tran, Thinh H. & Phan, Tuan T., 2021. "High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils," Renewable Energy, Elsevier, vol. 168(C), pages 57-63.
    11. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.
    12. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    13. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    14. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    15. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    16. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    19. Lin, Pengmusen & Yu, Xinyu & Wang, Han & Ming, Hui & Ge, Shengbo & Liu, Fang & Peng, Haowei & Sonne, Christian & Zhang, Libo, 2023. "Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk," Energy, Elsevier, vol. 282(C).
    20. Yao, Dong & Xu, Zaifeng & Qi, Huaqing & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong & Cui, Peizhe, 2022. "Carbon footprint and water footprint analysis of generating synthetic natural gas from biomass," Renewable Energy, Elsevier, vol. 186(C), pages 780-789.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.