IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp761-771.html

Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber

Author

Listed:
  • Pachiannan, Tamilselvan
  • Zhong, Wenjun
  • Xuan, Tiemin
  • Li, Bei
  • He, Zhixia
  • Wang, Qian
  • Yu, Xiong

Abstract

Application of biodiesel is very important for reducing the consumption of fossil fuels and improving emissions performance of internal combustion engines in the transportation field. Hydrogenated catalytic biodiesel has attracted more attention due to the high quality and eco-friendly nature. Hence, in order to provide more fundamental data for applying this biodiesel in engines, the spray liquid length, ignition and combustion characteristics for both diesel and hydrogenated catalytic biodiesel has been researched in a constant volume combustion chamber to see their differences and similarities, which can be used for determination of the possible proportion of hydrogenated catalytic biodiesel in blends for further research in engines. The results show that the spray liquid length of hydrogenated catalytic biodiesel is shorter than that of diesel fuel, which indicates that hydrogenated catalytic biodiesel has better atomization and less chance for occurrence of wall-impingement. While a shorter ignition delay of hydrogenated catalytic biodiesel reveals that it cannot be applied in blends with a large proportion due to knocking combustion. However, a shorter ignition delay of hydrogenated catalytic biodiesel means that it is a highly active fuel which can be used to engines as a blend for new advanced combustion modes. The lift-off lengths were compared with different optical methodologies. Lift-off length is more sensitive to fuel properties rather than temperature under low ambient temperature conditions. The relationships between spray liquid length and lift-off length and between ignition delay and lift-off length were also compared.

Suggested Citation

  • Pachiannan, Tamilselvan & Zhong, Wenjun & Xuan, Tiemin & Li, Bei & He, Zhixia & Wang, Qian & Yu, Xiong, 2019. "Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber," Renewable Energy, Elsevier, vol. 140(C), pages 761-771.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:761-771
    DOI: 10.1016/j.renene.2019.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    2. Zhong, Wenjun & Tamilselvan, P. & Wang, Qian & He, Zhixia & Feng, Huan & Yu, Xiong, 2018. "Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions," Energy, Elsevier, vol. 153(C), pages 349-358.
    3. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    4. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    5. Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 2: Combustion analysis," Applied Energy, Elsevier, vol. 88(4), pages 1130-1139, April.
    6. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Fengyu & Chen, Hao & Geng, Limin & Qi, Donghui & Wu, Han & Yan, Xuegong & Ji, Zhenhua & Zhang, Peng & Chen, Zhanming & Zhang, Wenbo, 2025. "Study on spray and combustion of acetone-butanol-ethanol (ABE)/biodiesel blends in a constant volume chamber," Energy, Elsevier, vol. 332(C).
    2. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    3. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    4. Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Wenjun & Pachiannan, Tamilselvan & He, Zhixia & Xuan, Tiemin & Wang, Qian, 2019. "Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends," Applied Energy, Elsevier, vol. 235(C), pages 641-652.
    2. Abul Kalam Azad & Julian Adhikari & Pobitra Halder & Mohammad G. Rasul & Nur M. S. Hassan & Mohammad M. K. Khan & Salman Raza Naqvi & Karthickeyan Viswanathan, 2020. "Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels," Energies, MDPI, vol. 13(11), pages 1-19, May.
    3. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    4. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    5. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    6. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    7. Payri, Raul & Gimeno, Jaime & Bardi, Michele & Plazas, Alejandro H., 2013. "Study liquid length penetration results obtained with a direct acting piezo electric injector," Applied Energy, Elsevier, vol. 106(C), pages 152-162.
    8. Homeyra Piri & Massimiliano Renzi & Marco Bietresato, 2023. "Technical Implications of the Use of Biofuels in Agricultural and Industrial Compression-Ignition Engines with a Special Focus on the Interactions with (Bio)lubricants," Energies, MDPI, vol. 17(1), pages 1-45, December.
    9. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Gires, Ezanee & Yu, Jianglong & Lucas, John & Yusaf, Talal, 2021. "Performance and exhaust emissions rate of small-scale turbojet engine running on dual biodiesel blends using Gasturb," Energy, Elsevier, vol. 232(C).
    10. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    11. Keunsang Lee & Haengmuk Cho, 2024. "Comparative Analysis of Performance and Emission Characteristics of Biodiesels from Animal Fats and Vegetable Oils as Fuel for Common Rail Engines," Energies, MDPI, vol. 17(7), pages 1-13, April.
    12. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Camellia sinensis leaf-assisted green synthesis of SO3H-functionalized ZnS/biochar nanocatalyst for highly selective solketal production and improved reusability in methylene blue dye adsorption," Renewable Energy, Elsevier, vol. 224(C).
    13. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    14. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    15. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    16. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    17. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    18. Chengguan Wang & Xiaozhi Qi & Tao Wang & Diming Lou & Piqiang Tan & Zhiyuan Hu & Liang Fang & Rong Yang, 2023. "Role of Altitude in Influencing the Spray Combustion Characteristics of a Heavy-Duty Diesel Engine in a Constant Volume Combustion Chamber. Part I: Free Diesel Jet," Energies, MDPI, vol. 16(12), pages 1-25, June.
    19. Zhaowen Wang & Shang Wu & Yuhan Huang & Yulin Chen & Shuguo Shi & Xiaobei Cheng & Ronghua Huang, 2017. "Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions," Energies, MDPI, vol. 10(8), pages 1-14, July.
    20. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:761-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.