IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp59-67.html
   My bibliography  Save this article

Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel

Author

Listed:
  • Ali, Obed M.
  • Mamat, Rizalman
  • Abdullah, Nik R.
  • Abdullah, Abdul Adam

Abstract

Depleting fossil fuel sources accompanied by continuously growing energy demands lead to increased interest in alternative energy sources. Blended biodiesel–diesel fuel has been approved as a commercial fuel at a low blending ratio. However, problems related to fuel properties are persistent at high blending ratios. Hence, in this study, the feasibility of biodiesel produced from palm oil was investigated. Characterization of blended fuel properties with increasing palm biodiesel ratio is conducted to evaluate engine performance test results. The qualifying of blended fuel properties was used to indicate the maximum blending ratio suitable for use in unmodified diesel engines according to the blended fuel standard ASTM D7467. The property test results revealed that blended fuel properties meet blended fuel standard requirements at up to 30% palm oil biodiesel. Furthermore, blending is efficient for reduction of the pour point from 14 °C for unblended biodiesel to less than 0 °C at a 30% biodiesel blending ratio. However, the energy content reduces by about 1.42% for each 10% increment of biodiesel. Engine test results demonstrated that there was no statistically significant difference for engine brake thermal efficiency among tested blended fuels compared to mineral diesel, and the lowest engine cyclic variation was achieved with blended fuel B30.

Suggested Citation

  • Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:59-67
    DOI: 10.1016/j.renene.2015.07.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    2. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    3. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    4. Sharma, Y.C. & Singh, B., 2009. "Development of biodiesel: Current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1646-1651, August.
    5. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    6. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    7. Gürü, Metin & Koca, Atilla & Can, Özer & Çınar, Can & Şahin, Fatih, 2010. "Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 637-643.
    8. Smith, Paul C. & Ngothai, Yung & Dzuy Nguyen, Q. & O'Neill, Brian K., 2010. "Improving the low-temperature properties of biodiesel: Methods and consequences," Renewable Energy, Elsevier, vol. 35(6), pages 1145-1151.
    9. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    10. Joshi, Hem & Moser, Bryan R. & Toler, Joe & Smith, William F. & Walker, Terry, 2010. "Effects of blending alcohols with poultry fat methyl esters on cold flow properties," Renewable Energy, Elsevier, vol. 35(10), pages 2207-2210.
    11. Zhang, H.G. & Han, X.J. & Yao, B.F. & Li, G.X., 2013. "Study on the effect of engine operation parameters on cyclic combustion variations and correlation coefficient between the pressure-related parameters of a CNG engine," Applied Energy, Elsevier, vol. 104(C), pages 992-1002.
    12. Sen, Asok K. & Litak, Grzegorz & Taccani, Rodolfo & Radu, Robert, 2008. "Wavelet analysis of cycle-to-cycle pressure variations in an internal combustion engine," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 886-893.
    13. Sharon, H. & Karuppasamy, K. & Soban Kumar, D.R. & Sundaresan, A., 2012. "A test on DI diesel engine fueled with methyl esters of used palm oil," Renewable Energy, Elsevier, vol. 47(C), pages 160-166.
    14. Muñoz, M. & Moreno, F. & Monné, C. & Morea, J. & Terradillos, J., 2011. "Biodiesel improves lubricity of new low sulphur diesel fuels," Renewable Energy, Elsevier, vol. 36(11), pages 2918-2924.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    2. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    3. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    4. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    5. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    6. Obed M. Ali & Talal Yusaf & Rizalman Mamat & Nik R. Abdullah & Abdul Adam Abdullah, 2014. "Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics," Energies, MDPI, vol. 7(7), pages 1-17, July.
    7. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    8. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    9. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    10. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    11. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    12. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    13. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    14. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    15. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    16. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    17. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    18. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    19. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    20. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:59-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.