IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p860-d139912.html
   My bibliography  Save this article

An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and Energy Analysis

Author

Listed:
  • Bahman Najafi

    (Biosystem Engineering Department, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran)

  • Sina Faizollahzadeh Ardabili

    (Biosystem Engineering Department, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran)

  • Amir Mosavi

    (Institute of Structural Mechanics, Bauhaus University Weimar, 99423 Weimar, Germany
    Institute of Automation, Obuda University, 1431 Budapest, Hungary)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

  • Timon Rabczuk

    (Institute of Structural Mechanics, Bauhaus University Weimar, 99423 Weimar, Germany)

Abstract

Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diesel engine and the engine performance has been considered from the viewpoint of exergy and energy approaches. Engine tests are performed at a constant 1500 rpm speed with various loads and fuel samples. The obtained experimental data are also applied to develop an artificial neural network (ANN) model. Response surface methodology (RSM) is employed to optimize the exergy and energy efficiencies. Based on the results of the energy analysis, optimal engine performance is obtained at 80% of full load in presence of B10 and B20 fuels. However, based on the exergy analysis results, optimal engine performance is obtained at 80% of full load in presence of B90 and B100 fuels. The optimum values of exergy and energy efficiencies are in the range of 25–30% of full load, which is the same as the calculated range obtained from mathematical modeling.

Suggested Citation

  • Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:860-:d:139912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    2. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    3. Nemati, Peyman & Jafarmadar, Samad & Taghavifar, Hadi, 2016. "Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model," Energy, Elsevier, vol. 115(P1), pages 528-538.
    4. Khalife, Esmail & Kazerooni, Hanif & Mirsalim, Mostafa & Roodbar Shojaei, Taha & Mohammadi, Pouya & Salleh, Amran Mohd & Najafi, Bahman & Tabatabaei, Meisam, 2017. "Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend," Energy, Elsevier, vol. 121(C), pages 331-340.
    5. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    6. Jafarmadar, Samad & Nemati, Peyman, 2016. "Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model," Renewable Energy, Elsevier, vol. 99(C), pages 514-523.
    7. Aghbashlo, Mortaza & Tabatabaei, Meisam & Mohammadi, Pouya & Mirzajanzadeh, Mehrdad & Ardjmand, Mehdi & Rashidi, Alimorad, 2016. "Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine," Renewable Energy, Elsevier, vol. 93(C), pages 353-368.
    8. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    9. Lei, Tingzhou & Wang, Zhiwei & Chang, Xia & Lin, Lu & Yan, Xiaoyu & Sun, Yincong & Shi, Xinguang & He, Xiaofeng & Zhu, Jinling, 2016. "Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends," Energy, Elsevier, vol. 95(C), pages 29-40.
    10. Jafarmadar, Samad & Nemati, Peyman, 2017. "Analysis of Exhaust Gas Recirculation (EGR) effects on exergy terms in an engine operating with diesel oil and hydrogen," Energy, Elsevier, vol. 126(C), pages 746-755.
    11. Aghbashlo, Mortaza & Shamshirband, Shahaboddin & Tabatabaei, Meisam & Yee, Por Lip & Larimi, Yaser Nabavi, 2016. "The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste," Energy, Elsevier, vol. 94(C), pages 443-456.
    12. Haiwen Song & Kelly Sison Quinton & Zhijun Peng & Hua Zhao & Nicos Ladommatos, 2016. "Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines," Energies, MDPI, vol. 9(1), pages 1-12, January.
    13. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    14. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    15. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrienn Dineva & Amir Mosavi & Sina Faizollahzadeh Ardabili & Istvan Vajda & Shahaboddin Shamshirband & Timon Rabczuk & Kwok-Wing Chau, 2019. "Review of Soft Computing Models in Design and Control of Rotating Electrical Machines," Energies, MDPI, vol. 12(6), pages 1-28, March.
    2. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    3. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints u4xw3, Center for Open Science.
    4. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    5. Yi Dong & Jianmin Liu & Yanbin Liu & Xinyong Qiao & Xiaoming Zhang & Ying Jin & Shaoliang Zhang & Tianqi Wang & Qi Kang, 2020. "A RBFNN & GACMOO-Based Working State Optimization Control Study on Heavy-Duty Diesel Engine Working in Plateau Environment," Energies, MDPI, vol. 13(1), pages 1-24, January.
    6. Taghavifar, Hadi & Nemati, Arash & Salvador, F.J. & De la Morena, J., 2019. "Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration," Energy, Elsevier, vol. 167(C), pages 211-223.
    7. Nosratabadi, Saeed & Mosavi, Amir & Shamshirband, Shahaboddin & Zavadskas, Edmundas Kazimieras & Rakotonirainy, Andry & Chau, Kwok Wing, 2020. "Sustainable Business Models: A Review," OSF Preprints ts54m, Center for Open Science.
    8. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    9. Najafi, Bahman & Akbarian, Eivaz & Lashkarpour, S. Mehdi & Aghbashlo, Mortaza & Ghaziaskar, Hassan S. & Tabatabaei, Meisam, 2019. "Modeling of a dual fueled diesel engine operated by a novel fuel containing glycerol triacetate additive and biodiesel using artificial neural network tuned by genetic algorithm to reduce engine emiss," Energy, Elsevier, vol. 168(C), pages 1128-1137.
    10. Sina Faizollahzadeh Ardabili & Bahman Najafi & Meysam Alizamir & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters," Energies, MDPI, vol. 11(11), pages 1-19, October.
    11. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    12. Roberto Finesso & Gilles Hardy & Alessandro Mancarella & Omar Marello & Antonio Mittica & Ezio Spessa, 2019. "Real-Time Simulation of Torque and Nitrogen Oxide Emissions in an 11.0 L Heavy-Duty Diesel Engine for Model-Based Combustion Control," Energies, MDPI, vol. 12(3), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sina Faizollahzadeh Ardabili & Bahman Najafi & Meysam Alizamir & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters," Energies, MDPI, vol. 11(11), pages 1-19, October.
    2. Bazooyar, Bahamin & Hosseini, Seyyed Yaghoob & Moradi Ghoje Begloo, Solat & Shariati, Ahmad & Hashemabadi, Seyed Hassan & Shaahmadi, Fariborz, 2018. "Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel," Energy, Elsevier, vol. 149(C), pages 438-453.
    3. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    4. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    5. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    6. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    7. Łukasz Muślewski & Marietta Markiewicz & Michał Pająk & Tomasz Kałaczyński & Davor Kolar, 2021. "Analysis of the Use of Fatty Acid Methyl Esters as an Additive to Diesel Fuel for Internal Combustion Engines," Energies, MDPI, vol. 14(21), pages 1-17, October.
    8. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Deka, Hiranya, 2023. "Theoretical potential estimation and multi-objective optimization of Water Hyacinth (Eichhornia Crassipes) biodiesel powered diesel engine at variable injection timings," Renewable Energy, Elsevier, vol. 206(C), pages 514-530.
    9. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    10. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    11. Nguyen Tuan Nghia & Nguyen Xuan Khoa & Wonjun Cho & Ocktaeck Lim, 2021. "A Study the Effect of Biodiesel Blends and the Injection Timing on Performance and Emissions of Common Rail Diesel Engines," Energies, MDPI, vol. 15(1), pages 1-15, December.
    12. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    13. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    14. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    15. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    16. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    17. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    18. Balli, Ozgur, 2022. "Thermodynamic, thermoenvironmental and thermoeconomic analyses of piston-prop engines (PPEs) for landing and take-off (LTO) flight phases," Energy, Elsevier, vol. 250(C).
    19. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Gires, Ezanee & Yu, Jianglong & Lucas, John & Yusaf, Talal, 2021. "Performance and exhaust emissions rate of small-scale turbojet engine running on dual biodiesel blends using Gasturb," Energy, Elsevier, vol. 232(C).
    20. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:860-:d:139912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.