IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039021.html
   My bibliography  Save this article

Energy, exergy, and emission (3E) analysis of hydrogen-enriched waste biodiesel-diesel fuel blends on an indirect injection dual-fuel CI engine

Author

Listed:
  • Bayramoğlu, Kubilay
  • Bayramoğlu, Tolga
  • Polat, Fikret
  • Sarıdemir, Suat
  • Alçelik, Necdet
  • Ağbulut, Ümit

Abstract

Limited fossil energy reserves and rising energy costs increase the importance of alternative renewable energy sources and more efficient use of energy. Hydrogen gas is an alternative renewable energy source for internal combustion engines due to its high combustion efficiency and lower calorific value and near-zero emissions. For more efficient and effective use of internal combustion engines, exergy analysis is also important along with energy analysis. In this study, biodiesel fuel obtained from waste cooking oil was blended with 20 % diesel fuel. Energy and exergy analyses were performed for the test fuels obtained by adding hydrogen at different ratios to the resulting fuel mixture. The experiments were carried out on a 3-cylinder, water-cooled, pre-combustion chamber diesel engine at a constant engine speed of 2200 rpm and under different loads (15 Nm, 30 Nm, 45 Nm and 60 Nm). Fuel energy ratio was calculated as 17.84 kW, 19.71 kW, 18.03 kW, 17.89 kW and 17.86 kW for D100, B20, B20H10, B20H20, B20H30 and B20H40 fuel blends, respectively. It was observed that heat loss increased by 10 %, mechanical energy rate increased by 100 % and exhaust energy rate increased by 57 % when 30 Nm torque energy flow rates were compared with 15 Nm torque case. Compared to 15 Nm engine load, fuel, exhaust, mechanical work and heat loss energy flow increases by 200 %, 300 %, 300 % and 100 % for 60 Nm engine load. The exergy destruction rate declines with increased engine loads. The exergy destruction rate constitutes approximately 46.7 % of the total exergy rate for 60 Nm engine load. The highest first- and second-law efficiencies for all test fuel are detected when the engine runs at 45 Nm. At this engine load, the first law efficiency is calculated to be 29.53 %, 27.91 %, 28.94 %, 29.4 %, 29.72 %, and 30.47 %, and the second law efficiency is calculated to be 27.62 %, 26.08 %, 27.05 %, 27.50 %, 27.81 %, and 28.52 % for D100, B20, B20+H10, B20+H20, B20+H30, and B20+H40.

Suggested Citation

  • Bayramoğlu, Kubilay & Bayramoğlu, Tolga & Polat, Fikret & Sarıdemir, Suat & Alçelik, Necdet & Ağbulut, Ümit, 2025. "Energy, exergy, and emission (3E) analysis of hydrogen-enriched waste biodiesel-diesel fuel blends on an indirect injection dual-fuel CI engine," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039021
    DOI: 10.1016/j.energy.2024.134124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
    2. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    3. Cristian Sandu & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Alexandru Cernat & Rares Georgescu & Cristian Nutu, 2023. "The Influence of N-Butanol Addition in Gasoline on the Combustion in the Spark Ignition Engine," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    4. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    5. Senthur Prabu, S. & Asokan, M.A. & Roy, Rahul & Francis, Steff & Sreelekh, M.K., 2017. "Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives," Energy, Elsevier, vol. 122(C), pages 638-648.
    6. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    8. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    9. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    10. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).
    11. Khalaf, Mohamed & Qenawy, Mohamed & Xuan, Tiemin, 2024. "Experimental investigation on the performance and emissions of extracted biodiesels from mixed Jatropha-Castor seeds: Comprehensive assessment," Applied Energy, Elsevier, vol. 374(C).
    12. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    13. Yuping Li & Maolin Ye & Fenghua Tan & Chenguang Wang & Jinxing Long, 2022. "Exergy Analysis of Alternative Configurations of Biomass-Based Light Olefin Production System with a Combined-Cycle Scheme via Methanol Intermediate," Energies, MDPI, vol. 15(2), pages 1-19, January.
    14. Gad, M.S. & Abu-Elyazeed, O.S. & Mohamed, M.A. & Hashim, A.M., 2021. "Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics," Energy, Elsevier, vol. 223(C).
    15. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    16. Alexandru Cernat & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Cristian Nutu & Dinu Fuiorescu, 2020. "Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    17. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    18. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. El-Shafay, A.S. & Gad, M.S. & Ağbulut, Ümit & Attia, El-Awady, 2023. "Optimization of performance and emission outputs of a CI engine powered with waste fat biodiesel: A detailed RSM, fuzzy multi-objective and MCDM application," Energy, Elsevier, vol. 275(C).
    20. Ma, Zetai & Zhang, Kun & Xiang, Hanchun & Gu, Jie & Yang, Mingyang & Deng, Kangyao, 2023. "Experimental study on influence of high exhaust backpressure on diesel engine performance via energy and exergy analysis," Energy, Elsevier, vol. 263(PB).
    21. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    22. Behdad Shadidi & Gholamhassan Najafi & Talal Yusaf, 2021. "A Review of Hydrogen as a Fuel in Internal Combustion Engines," Energies, MDPI, vol. 14(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.
    3. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Deka, Hiranya, 2023. "Theoretical potential estimation and multi-objective optimization of Water Hyacinth (Eichhornia Crassipes) biodiesel powered diesel engine at variable injection timings," Renewable Energy, Elsevier, vol. 206(C), pages 514-530.
    4. Sasidhar, K.B. & Yesuraj, K. & Somasundaram, Murugavelh & Antunes, Elsa, 2024. "Production and utilization of diesel-equivalent renewable fuels from waste cooking oil and low-density polyethylene: Experimental investigation on performance, combustion, and emission characteristics," Energy, Elsevier, vol. 313(C).
    5. Lozano-Martín, Daniel & Moreau, Alejandro & Chamorro, César R., 2022. "Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models," Renewable Energy, Elsevier, vol. 198(C), pages 1398-1429.
    6. Enzo Galloni & Davide Lanni & Gustavo Fontana & Gabriele D’Antuono & Simone Stabile, 2022. "Performance Estimation of a Downsized SI Engine Running with Hydrogen," Energies, MDPI, vol. 15(13), pages 1-12, June.
    7. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    8. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    9. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    10. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    11. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    12. Jia, Hekun & Jian, Yi & Yin, Bifeng & Yang, Junfeng & Liu, Zhiyuan, 2023. "Experimental study on the combustion, emissions and fuel consumption of elliptical nozzle diesel engine," Energy, Elsevier, vol. 262(PB).
    13. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    14. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    15. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    16. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    17. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).
    18. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    19. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    20. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.