IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p528-538.html
   My bibliography  Save this article

Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model

Author

Listed:
  • Nemati, Peyman
  • Jafarmadar, Samad
  • Taghavifar, Hadi

Abstract

In the present work, the exergy analysis was carried out for a diesel engine fueled with waste cooking oil (WCO) and its blends in four-stroke DI (direct injection) diesel engine at full load operation. To model the combustion process, a computerized version of Shahed's quasi-dimensional multi-zone was used. Moreover, a FORTRAN-based code, which includes 12 species (CO2, H2O, N2, O2, CO, H, OH, H2, N, NO, O, Ar) associated with combustion products was employed to study the exergy analysis. The fuel injection amount was kept constant and five different fuel mixtures (B0, B5, B20, B50 and B100) were employed during a closed cycle. The computational in-cylinder pressures for neat diesel fuel were compared with those of calculated experimentally in the literature, and they showed a good agreement. Various rate and accumulative exergy components were computed with crank position at five fuel compositions. The results showed that as biodiesel increases by volume blends from 0% to 100%, the exergy efficiency increases slightly. The accumulative irreversibility decreased by 4.7%. From the viewpoint of the exergy analysis, for considered biodiesel blends the biodiesel fuel could be used as an alternative fuel without any considerable penalty on converting the fuel exergy to thermal energy in order to produce useful work. Moreover, the exergetic performance coefficient showed that B20 was the optimum biodiesel blend to present the best combustion performance.

Suggested Citation

  • Nemati, Peyman & Jafarmadar, Samad & Taghavifar, Hadi, 2016. "Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model," Energy, Elsevier, vol. 115(P1), pages 528-538.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:528-538
    DOI: 10.1016/j.energy.2016.09.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazar, Hanbey, 2009. "Effects of biodiesel on a low heat loss diesel engine," Renewable Energy, Elsevier, vol. 34(6), pages 1533-1537.
    2. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Jafarmadar, Samad, 2014. "Multidimensional modeling of the effect of EGR (exhaust gas recirculation) mass fraction on exergy terms in an indirect injection diesel engine," Energy, Elsevier, vol. 66(C), pages 305-313.
    5. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    6. Jafarmadar, Samad & Nemati, Peyman, 2015. "Numerical investigation of the effect split injection scheme on exergy terms in an IDI (indirect injection) diesel engine by three dimensional modeling," Energy, Elsevier, vol. 93(P2), pages 2280-2291.
    7. Stepanov, V.S., 1995. "Chemical energies and exergies of fuels," Energy, Elsevier, vol. 20(3), pages 235-242.
    8. Aghbashlo, Mortaza & Tabatabaei, Meisam & Mohammadi, Pouya & Mirzajanzadeh, Mehrdad & Ardjmand, Mehdi & Rashidi, Alimorad, 2016. "Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine," Renewable Energy, Elsevier, vol. 93(C), pages 353-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taghavifar, Hadi & Nemati, Arash & Walther, Jens Honore, 2019. "Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine," Energy, Elsevier, vol. 187(C).
    2. Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    2. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    3. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
    4. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    5. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    6. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    7. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    8. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    9. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    10. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    11. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Marco Bietresato & Carlo Caligiuri & Anna Bolla & Massimiliano Renzi & Fabrizio Mazzetto, 2019. "Proposal of a Predictive Mixed Experimental- Numerical Approach for Assessing the Performance of Farm Tractor Engines Fuelled with Diesel- Biodiesel-Bioethanol Blends," Energies, MDPI, vol. 12(12), pages 1-45, June.
    13. Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan, 2020. "CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine," Energies, MDPI, vol. 13(14), pages 1-21, July.
    14. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    15. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    16. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    17. Musthafa, M. Mohamed, 2017. "Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive," Energy, Elsevier, vol. 134(C), pages 234-239.
    18. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    19. da Silva, Marcelo José & Melegari de Souza, Samuel Nelson & Inácio Chaves, Luiz & Aparecido Rosa, Helton & Secco, Deonir & Ferreira Santos, Reginaldo & Aparecido Baricatti, Reinaldo & Camargo Nogueira, 2013. "Comparative analysis of engine generator performance using diesel oil and biodiesels available in Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 278-282.
    20. Muruganantham Ponnusamy & Bharathwaaj Ramani & Ravishankar Sathyamruthy, 2021. "A Parametric Study on a Diesel Engine Fuelled Using Waste Cooking Oil Blended with Al 2 O 3 Nanoparticle—Performance, Emission, and Combustion Characteristics," Sustainability, MDPI, vol. 13(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:528-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.