IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3688-d386265.html
   My bibliography  Save this article

CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine

Author

Listed:
  • Rahim Karami

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia
    School of Bio System Engineering, Shiraz University, Shiraz 71454, Iran)

  • Mohammad G. Rasul

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia)

  • Mohammad M. K. Khan

    (School of Engineering and Technology, Central Queensland University, Rockhampton, Queensland 4702, Australia)

Abstract

Rising global concerns about global warming caused by pollution from excessive fossil fuels consumption, along with the high price of them in diesel engines, are the important reasons to search for fuels which is readily available and do not have destructive effects on the environment. Biodiesel is arguably the most appropriate and sustainable alternative to diesel fuel. Tomato seeds are one of the potential sources of biodiesel. They make up about 72% by weight of tomato waste, which contains an average of 24% oil. Tomato seed oil (TSO) can be used as a cheap and non-edible source of biodiesel. This paper investigated, both experimentally and numerically, the effects of different diesel–TSOB (tomato seed oil biodiesel) blends on the performance and emissions parameters of a four-cylinder, four-stroke, indirect injection diesel engine. The main goal of the paper was the simulation of the formation process of the emissions in the combustion chamber. The experimentally measured parameters such as torque, brake specific fuel consumption, exhaust gas temperature, nitrogen oxides, carbon monoxide, carbon dioxide, particulate matter, peak in-cylinder pressure, in-cylinder temperature and Reaction_Progress_Variable at different engine loads and speeds from 1200 to 2400 rpm at increments of 200 rpm are analyzed through ANOVA. The highest brake specific fuel consumption (BSFC) was observed for pure diesel and the lowest for the fuel blend with 10% biodiesel. The fuel blend with 20% biodiesel produced the highest torque. The engine was modeled using the AVL FIRE software. The model simulation results revealed that the highest nitrogen oxide (NOx) is produced in the throat of the combustion chamber to the top of the piston, the place of carbon dioxides (CO 2 ) formation is near the combustion chamber boundaries and the location of carbon monoxides (CO) formation is near the combustion chamber boundaries and at the center area of the top of the piston. These results also show that the particulate matter (PM) emissions are formed where the fuel is injected into the combustion chamber.

Suggested Citation

  • Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan, 2020. "CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine," Energies, MDPI, vol. 13(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3688-:d:386265
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim Khalil Adam & Abdul Rashid Abdul Aziz & Morgan R. Heikal & Suzana Yusup & Firmansyah & Ahmad Shahrul Ahmad & Ezrann Zharif Zainal Abidin, 2018. "Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    3. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    4. Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan & Mohammad Anwar, 2019. "Performance Analysis of Direct Injection Diesel Engine Fueled with Diesel-Tomato Seed Oil Biodiesel Blending by ANOVA and ANN," Energies, MDPI, vol. 12(23), pages 1-18, November.
    5. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    6. Aydin, Hüseyin & Bayindir, Hasan, 2010. "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 588-592.
    7. Baiju, B. & Naik, M.K. & Das, L.M., 2009. "A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil," Renewable Energy, Elsevier, vol. 34(6), pages 1616-1621.
    8. S. M. Ashrafur Rahman & Md. Nurun Nabi & Thuy Chu Van & Kabir Suara & Mohammad Jafari & Ashley Dowell & Md. Aminul Islam & Anthony J. Marchese & Jessica Tryner & Md. Farhad Hossain & Thomas J. Rainey , 2018. "Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends," Energies, MDPI, vol. 11(4), pages 1-15, March.
    9. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. A. G. M. B. Mustayen & M. G. Rasul & Xiaolin Wang & M. M. K. Bhuiya & Michael Negnevitsky & James Hamilton, 2022. "Theoretical and Experimental Analysis of Engine Performance and Emissions Fuelled with Jojoba Biodiesel," Energies, MDPI, vol. 15(17), pages 1-22, August.
    3. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    2. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    3. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    4. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    5. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    6. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    7. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    8. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    9. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    10. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    11. Eryilmaz, Tanzer & Yesilyurt, Murat Kadir, 2016. "Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel," Renewable Energy, Elsevier, vol. 95(C), pages 233-247.
    12. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    13. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    14. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    15. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    16. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    17. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    18. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.
    19. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
    20. da Silva, Marcelo José & Melegari de Souza, Samuel Nelson & Inácio Chaves, Luiz & Aparecido Rosa, Helton & Secco, Deonir & Ferreira Santos, Reginaldo & Aparecido Baricatti, Reinaldo & Camargo Nogueira, 2013. "Comparative analysis of engine generator performance using diesel oil and biodiesels available in Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 278-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3688-:d:386265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.