IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221011488.html
   My bibliography  Save this article

Improvement of atomization characteristics of coal-water slurries

Author

Listed:
  • Gvozdyakov, Dmitry
  • Zenkov, Andrey

Abstract

Coal-water slurries are promising fuels for thermal power engineering despite some problems associated with their combustion in steam and hot water boilers. One of these problems is formation of sufficiently large (more than 1 mm) fuel droplets during coaxial spraying through the nozzles. The aim of this work is to substantiate efficiency of ethyl or isoamyl alcohol addition as a third component of coal-water fuels, which significantly improve atomization technology, by the results of experimental determination of distribution of coal-water slurry droplets by velocity and size in the process of coaxial spraying. Based on the results of experimental studies of atomization process of coal-water slurries prepared on the basis of lignite with addition of ethyl and isoamyl alcohol, instantaneous fields of fuel droplet velocities and sizes in a wide range (from 20 μm to 1 mm) in several cross-sections of the jet at several values of air and fuel pressure were determined using a non-contact method of jet visualization. It was experimentally established that substitution of water (no more than 3% by weight) in the composition of coal-water slurry by fairly typical alcohols leads to decrease in droplet velocities during atomization of alcohol-coal-water slurries in comparison with conventional coal-water fuel by 5–8% at air pressure of 0.28 MPa and fuel pressure of 0.3 MPa. Concentration of sufficiently small fuel droplets (up to 200 μm) increases by 13.4% and by 6.6% during atomization of alcohol-coal-water slurries with addition of ethyl and isoamyl alcohol, respectively, in comparison with conventional coal-water fuel. Influence of small additives of ethyl and isoamyl alcohol in the composition of coal-water fuel, established in experiments for the first time, on flow characteristics of the droplets after spraying proves the possibility of effective application of such three-component suspensions in thermal power engineering. The results obtained are of significant practical value, since they illustrate the possibility of ignition delay time reduction of droplets of promising three-component coal-water slurries with addition of such alcohols.

Suggested Citation

  • Gvozdyakov, Dmitry & Zenkov, Andrey, 2021. "Improvement of atomization characteristics of coal-water slurries," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221011488
    DOI: 10.1016/j.energy.2021.120900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Jisoo & Kim, Donghwan & Seo, Jeawon & Park, Sungwook, 2020. "Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle," Energy, Elsevier, vol. 205(C).
    2. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    3. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
    4. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    5. Li, Genbao & Li, Chuqiao, 2021. "Experimental study on the spray steadiness of an internal-mixing twin-fluid atomizer," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.
    2. Gvozdyakov, D.V. & Zenkov, A.V. & Kaltaev, A. Zh, 2022. "Characteristics of spraying and ignition of coal-water fuels based on lignite and liquid pyrolysis products of wood waste," Energy, Elsevier, vol. 257(C).
    3. Geniy Kuznetsov & Dmitrii Antonov & Maxim Piskunov & Leonid Yanovskyi & Olga Vysokomornaya, 2022. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    4. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    2. Eide, Jan & de Sisternes, Fernando J. & Herzog, Howard J. & Webster, Mort D., 2014. "CO2 emission standards and investment in carbon capture," Energy Economics, Elsevier, vol. 45(C), pages 53-65.
    3. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    4. Vershinina, Kseniya & Shevyrev, Sergei & Strizhak, Pavel, 2021. "Coal and petroleum-derived components for high-moisture fuel slurries," Energy, Elsevier, vol. 219(C).
    5. Chistyakov, A.V. & Nikolaev, S.A. & Zharova, P.A. & Tsodikov, M.V. & Manenti, F., 2019. "Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst," Energy, Elsevier, vol. 166(C), pages 569-576.
    6. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    8. Piskunov, Maxim & Romanov, Daniil & Strizhak, Pavel, 2023. "Stability and rheology of carbon-containing composite liquid fuels under subambient temperatures," Energy, Elsevier, vol. 278(PA).
    9. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    10. Anastasia Islamova & Svetlana Kropotova & Pavel Strizhak, 2022. "Research into Energy Production from the Combustion of Waste-Derived Composite Fuels," Energies, MDPI, vol. 15(15), pages 1-4, August.
    11. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    12. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    13. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104, pages 1-18.
    15. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    16. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    17. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    18. Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
    19. Hammerton, James M. & Li, Hu & Ross, Andrew B., 2020. "Char-diesel slurry fuels for microgeneration: Emission characteristics and engine performance," Energy, Elsevier, vol. 207(C).
    20. Rübbelke, Dirk & Vögele, Stefan, 2013. "Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare," Energy Policy, Elsevier, vol. 59(C), pages 582-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221011488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.