IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp1068-1088.html
   My bibliography  Save this article

Butanol and pentanol: The promising biofuels for CI engines – A review

Author

Listed:
  • M, Vinod Babu
  • K, Madhu Murthy
  • G, Amba Prasad Rao

Abstract

Existing fossil fuels may not be able to meet the energy demand in near future due to rapid increase in oil consumption. Fluctuating oil prices, depleting oil reserves and high level of harmful emissions through the use of conventional diesel forced the research community to focus their attention on the use of biofuels in compression ignition (CI) engines. Extensive use of biofuels offer multitude of advantages such as social structure, self-sustainability, soil development, effective use of cultivable land and self-employment. Butanol and pentanol are the most attractive biofuels, which could relieve energy crisis and reduce carcinogenic particulate matter (PM) emissions that are customary in CI engines. Research in the recent past has witnessed the notable amount of study in the use of these alcohols, mainly because of the improved yield through modern fermentation processes. Present work reviews the literature on the effects of using butanol and pentanol on the combustion, performance and exhaust emissions of CI engines operating under various test conditions. Attention is paid towards the review of strategies employed for use of higher alcohols in neat or in blended form to increase the renewable fraction of fuels in CI engines. The combination of exhaust gas recirculation (EGR) rates, delayed injection and the use of higher alcohols can enable low temperature combustion (LTC) strategy in CI engines, which presents simultaneous reduction in oxides of nitrogen (NOx) and soot emissions with increased efficiency. This paper also summarizes the key findings of earlier researchers contributed for use of biofuels in CI engines emphasizing higher alcohols. These biofuels are potential and attractive alternatives for the use in CI engines for improved performance and substantial reduction of harmful emissions.

Suggested Citation

  • M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:1068-1088
    DOI: 10.1016/j.rser.2017.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Byungchul & Jiang, Xiaolong & Kim, Young Kwon & Jung, Gilsung & Lee, Chunhwan & Choi, Inchul & Song, Chi Sung, 2015. "Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 20-28.
    2. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    3. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    4. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    5. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    6. Soloiu, Valentin & Duggan, Marvin & Harp, Spencer & Vlcek, Brian & Williams, David, 2013. "PFI (port fuel injection) of n-butanol and direct injection of biodiesel to attain LTC (low-temperature combustion) for low-emissions idling in a compression engine," Energy, Elsevier, vol. 52(C), pages 143-154.
    7. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    8. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    9. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    10. Chen, Zheng & Liu, Jingping & Han, Zhiyu & Du, Biao & Liu, Yun & Lee, Chiafon, 2013. "Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends," Energy, Elsevier, vol. 55(C), pages 638-646.
    11. Pellegrini, Laura A. & Soave, Giorgio & Gamba, Simone & Langè, Stefano, 2011. "Economic analysis of a combined energy–methanol production plant," Applied Energy, Elsevier, vol. 88(12), pages 4891-4897.
    12. Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C., 2010. "Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends," Energy, Elsevier, vol. 35(12), pages 5173-5184.
    13. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    14. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2006. "Theoretical modeling and experimental studies on biodiesel-fueled engine," Renewable Energy, Elsevier, vol. 31(11), pages 1813-1826.
    15. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    16. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    17. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    18. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    19. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
    20. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    21. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    22. Atmanli, Alpaslan & Ileri, Erol & Yuksel, Bedri & Yilmaz, Nadir, 2015. "Extensive analyses of diesel–vegetable oil–n-butanol ternary blends in a diesel engine," Applied Energy, Elsevier, vol. 145(C), pages 155-162.
    23. Liu, Haifeng & Wang, Xin & Zheng, Zunqing & Gu, Jingbo & Wang, Hu & Yao, Mingfa, 2014. "Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine," Energy, Elsevier, vol. 74(C), pages 741-752.
    24. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    25. Murugesan, A. & Umarani, C. & Chinnusamy, T.R. & Krishnan, M. & Subramanian, R. & Neduzchezhain, N., 2009. "Production and analysis of bio-diesel from non-edible oils--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 825-834, May.
    26. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    27. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    28. Murugesan, A. & Umarani, C. & Subramanian, R. & Nedunchezhian, N., 2009. "Bio-diesel as an alternative fuel for diesel engines--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 653-662, April.
    29. Karabektas, Murat & Hosoz, Murat, 2009. "Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends," Renewable Energy, Elsevier, vol. 34(6), pages 1554-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gvozdyakov, Dmitry & Zenkov, Andrey, 2021. "Improvement of atomization characteristics of coal-water slurries," Energy, Elsevier, vol. 230(C).
    2. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    3. Krishnan, M. Gowthama & Rajkumar, Sundararajan, 2022. "Effects of dual fuel combustion on performance, emission and energy-exergy characteristics of diesel engine fuelled with diesel-isobutanol and biodiesel-isobutanol," Energy, Elsevier, vol. 252(C).
    4. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    6. Sheriff, S. Abdul & Kumar, Indrala Kishan & Mandhatha, Petluri Sai & Jambal, Samraj Sunder & Sellappan, Raja & Ashok, B. & Nanthagopal, K., 2020. "Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement," Renewable Energy, Elsevier, vol. 147(P1), pages 2295-2308.
    7. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    8. Nadir Yilmaz & Francisco M. Vigil & Alpaslan Atmanli & Burl Donaldson, 2022. "Detailed Analysis of PAH Formation, Toxicity and Regulated Pollutants in a Diesel Engine Running on Diesel Blends with n-Propanol, n-Butanol and n-Pentanol," Energies, MDPI, vol. 15(17), pages 1-14, September.
    9. Chistyakov, A.V. & Nikolaev, S.A. & Zharova, P.A. & Tsodikov, M.V. & Manenti, F., 2019. "Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst," Energy, Elsevier, vol. 166(C), pages 569-576.
    10. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    11. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. EL-Seesy, Ahmed I. & He, Zhixia & Kosaka, Hidenori, 2021. "Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures," Energy, Elsevier, vol. 214(C).
    14. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    4. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    5. Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.
    6. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    7. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    8. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    9. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    10. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    11. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
    12. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    15. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    16. Liu, Mao-Bin & He, Bang-Quan & Zhao, Hua, 2015. "Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol," Energy, Elsevier, vol. 85(C), pages 296-303.
    17. Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Liu, Jialin & Reitz, Rolf D. & Yao, Mingfa, 2016. "Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications," Energy, Elsevier, vol. 114(C), pages 542-558.
    18. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.
    19. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    20. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:1068-1088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.