IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap687-699.html
   My bibliography  Save this article

Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine

Author

Listed:
  • Rajesh Kumar, B.
  • Saravanan, S.
  • Rana, D.
  • Nagendran, A.

Abstract

Diesel engines do not have the luxury of a thoroughly premixed charge like gasoline engines. Fossil-diesel auto-ignites quickly after its injection, resulting in high smoke and NOx emissions due to heterogeneous fuel/air distribution and high combustion temperatures. Injection timing modification and exhaust gas re-circulation can provide ample duration for air and fuel to pre-mix ‘inside’ the cylinder and burn under low temperatures which reduces harmful NOx/smoke in a diesel engine simultaneously. This study proposes the use of three advanced biofuels with a low cetane number, viz. dimethyl carbonate (DMC), iso-butanol and n-pentanol with blend-ratios of 15, 38 and 45 vol% in diesel, respectively (that corresponds to a uniform oxygen-content of 8%) in a single-cylinder DI diesel engine. The engine characteristics were investigated under high loads@1500 rpm by controlling the charge dilution and combustion phasing using moderate EGR rates and start of injection (SOI) modification. The blends presented large amounts of premixed combustion that resulted in high in-cylinder pressures and heat release rates. Results indicated that NOx and smoke could be simultaneously reduced using the combination of the proposed advanced biofuel/diesel blends, late injection and moderate EGR rates. However, there is an increase in HC and CO emissions at all test conditions.

Suggested Citation

  • Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:687-699
    DOI: 10.1016/j.renene.2016.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    2. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    3. Cheng, Xiaobei & Li, Shuai & Yang, Jin & Liu, Bei, 2016. "Investigation into partially premixed combustion fueled with N-butanol-diesel blends," Renewable Energy, Elsevier, vol. 86(C), pages 723-732.
    4. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    5. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    6. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    7. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    8. Karabektas, Murat & Hosoz, Murat, 2009. "Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends," Renewable Energy, Elsevier, vol. 34(6), pages 1554-1559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Konjević, Lucija & Racar, Marko & Ilinčić, Petar & Faraguna, Fabio, 2023. "A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol," Energy, Elsevier, vol. 262(PA).
    3. O'Connell, N. & Röll, A. & Lechner, R. & Luo, T. & Brautsch, M., 2019. "PODE-blend as pilot fuel in a biomethane dual fuel engine: Experimental analysis of performance, combustion and emissions characteristics," Renewable Energy, Elsevier, vol. 143(C), pages 101-111.
    4. Thiyagarajan, Subramanian & Varuvel, Edwin Geo & Martin, Leenus Jesu & Beddhannan, Nagalingam, 2019. "Mitigation of carbon footprints through a blend of biofuels and oxygenates, combined with post-combustion capture system in a single cylinder CI engine," Renewable Energy, Elsevier, vol. 130(C), pages 1067-1081.
    5. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    6. Li, Gang & Lee, Timothy H. & Liu, Zhien & Lee, Chiafon F. & Zhang, Chunhua, 2019. "Effects of injection strategies on combustion and emission characteristics of a common-rail diesel engine fueled with isopropanol-butanol-ethanol and diesel blends," Renewable Energy, Elsevier, vol. 130(C), pages 677-686.
    7. Rassoulinejad-Mousavi, Seyed Moein & Mao, Yijin & Zhang, Yuwen, 2018. "Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel," Renewable Energy, Elsevier, vol. 128(PA), pages 313-323.
    8. Nadir Yilmaz & Francisco M. Vigil & Alpaslan Atmanli & Burl Donaldson, 2022. "Detailed Analysis of PAH Formation, Toxicity and Regulated Pollutants in a Diesel Engine Running on Diesel Blends with n-Propanol, n-Butanol and n-Pentanol," Energies, MDPI, vol. 15(17), pages 1-14, September.
    9. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    10. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    11. Pinzi, S. & López, I. & Leiva-Candia, D.E. & Redel-Macías, M.D. & Herreros, J.M. & Cubero-Atienza, A. & Dorado, M.P., 2018. "Castor oil enhanced effect on fuel ethanol-diesel fuel blend properties," Applied Energy, Elsevier, vol. 224(C), pages 409-416.
    12. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    2. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    3. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    4. Lapuerta, Magín & Hernández, Juan José & Fernández-Rodríguez, David & Cova-Bonillo, Alexis, 2017. "Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber," Energy, Elsevier, vol. 118(C), pages 613-621.
    5. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    6. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    7. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    9. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    10. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    11. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    12. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    13. Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Liu, Jialin & Reitz, Rolf D. & Yao, Mingfa, 2016. "Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications," Energy, Elsevier, vol. 114(C), pages 542-558.
    14. Rafael R. Maes & Geert Potters & Erik Fransen & Rowan Van Schaeren & Silvia Lenaerts, 2022. "Influence of Adding Low Concentration of Oxygenates in Mineral Diesel Oil and Biodiesel on the Concentration of NO, NO 2 and Particulate Matter in the Exhaust Gas of a One-Cylinder Diesel Generator," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    15. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    16. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    17. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    18. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    19. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:687-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.