IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219314392.html
   My bibliography  Save this article

Experimental study on effects of ethanol-diesel fuel blended on spray characteristics under ultra-high injection pressure up to 350 MPa

Author

Listed:
  • Yu, Yusong

Abstract

In the present study, the atomization characteristics of ethanol-diesel blends fuel spray and shock waves were investigated by using experimental methods under ultra-high injection pressure in the range 200Mpa–350 MPa. A high-speed camera and Schlieren technology were used to visualize the fuel spray morphology and shock waves. The spray tip penetration, velocity and shock wave angle were determined via experimental approaches. Furthermore, the special spray shape under ultra-high injection pressure, such as liquid tail, expanded body and bifurcated structures, was analyzed. To validate the classical spray empirical models, predicted spray penetration results based on two typical models (Dent's and Hiroyasu's model) were compared with experimental data. The results indicated that fuel injection pressure and ethanol volume fraction presented significant effects on the spray evolution. With increasing injection pressure, the spray tip penetration became faster and the induced attached shock waves reveal clearer. The fuel spray jets achieved the larger penetration velocity and more induced shock waves under higher injection pressure or lower ethanol volume fraction.

Suggested Citation

  • Yu, Yusong, 2019. "Experimental study on effects of ethanol-diesel fuel blended on spray characteristics under ultra-high injection pressure up to 350 MPa," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314392
    DOI: 10.1016/j.energy.2019.07.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Daoan & Cai, Wenzhe & Li, Chunying & Lu, Jian, 2021. "Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger," Energy, Elsevier, vol. 234(C).
    2. Roman Volkov & Timur Valiullin & Olga Vysokomornaya, 2021. "Spraying of Composite Liquid Fuels Based on Types of Coal Preparation Waste: Current Problems and Achievements: Review," Energies, MDPI, vol. 14(21), pages 1-17, November.
    3. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.