IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6584-d461769.html
   My bibliography  Save this article

Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine

Author

Listed:
  • Laura Aguado-Deblas

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Jesús Hidalgo-Carrillo

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Felipa M. Bautista

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Carlos Luna

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Juan Calero

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Alejandro Posadillo

    (Seneca Green Catalyst S.L., Campus de Rabanales, 14014 Córdoba, Spain)

  • Antonio A. Romero

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Diego Luna

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

  • Rafael Estévez

    (Departamento de Química Orgánica, Campus de Rabanales, Universidad de Córdoba, Ed. Marie Curie, 14014 Córdoba, Spain)

Abstract

The main objective of this work is to contribute to a gradual replacement process of fossil diesel (D) with biofuels composed by diethyl carbonate (DEC) and either sunflower or castor oil, as straight vegetable oils (SVOs). DEC is a very interesting candidate as an oxygenated additive not only because of its low price and renewable nature, but also its favorable fuel properties, such as very low kinematic viscosity, high cetane number, high oxygen content, rich cold flow properties and good miscibility with fossil diesel and vegetable oils. In this work, the more suitable DEC/SVO biofuels are chosen based on kinematic viscosity, according to the European normative. Additionally, the most relevant physical–chemical properties of (bio)fuels such as density, calorific value, cloud point, pour point and cetane number are determined. The influence of DEC on engine performance and exhaust emissions is analyzed by fueling a conventional Diesel engine with the different D/DEC/SVO triple and DEC/SVO double mixtures. The tests results are also compared with commercial diesel. From the results, it is concluded that Diesel engine fueled with the blends studied exhibits an excellent performance in terms of power output, very similar to diesel. Additionally, the use of these blends can remarkably decrease smoke emissions down to 98%, with respect to fossil diesel. The addition of DEC shows a significant improvement in cold flow properties of fuel mixtures in the exchange of a slightly higher brake specific fuel consumption (BSFC) than diesel. Interestingly, the pure biofuels composed by DEC and SVO allow for a suitable engine operation and achieve the lowest emissions, which means these blends can be successfully employed in current engines without adding fossil diesel, i.e., their use entail a 100% renewability.

Suggested Citation

  • Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2020. "Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6584-:d:461769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    2. Kasiraman, G. & Nagalingam, B. & Balakrishnan, M., 2012. "Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending," Energy, Elsevier, vol. 47(1), pages 116-124.
    3. Laura Aguado-Deblas & Rafael Estevez & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna, 2020. "Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends," Energies, MDPI, vol. 13(18), pages 1-14, September.
    4. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    5. Rafael Estevez & Laura Aguado-Deblas & Alejandro Posadillo & Beatriz Hurtado & Felipa M. Bautista & José M. Hidalgo & Carlos Luna & Juan Calero & Antonio A. Romero & Diego Luna, 2019. "Performance and Emission Quality Assessment in a Diesel Engine of Straight Castor and Sunflower Vegetable Oils, in Diesel/Gasoline/Oil Triple Blends," Energies, MDPI, vol. 12(11), pages 1-13, June.
    6. Shah, Pinkesh R. & Gaitonde, U.N. & Ganesh, Anuradda, 2018. "Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics," Renewable Energy, Elsevier, vol. 115(C), pages 685-696.
    7. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    8. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2021. "Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    2. Violeta Makareviciene, 2022. "Advances in Catalytic Technologies for Biodiesel Fuel Synthesis," Energies, MDPI, vol. 15(3), pages 1-4, January.
    3. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Aguado-Deblas & Rafael Estevez & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna, 2020. "Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    3. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    4. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Diego Luna & Rafael Estévez, 2021. "Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    5. Diego Luna & Rafael Estevez, 2022. "Optimization of Biodiesel and Biofuel Process," Energies, MDPI, vol. 15(16), pages 1-4, August.
    6. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    7. Taghavifar, Hadi & Nemati, Arash & Salvador, F.J. & De la Morena, J., 2019. "Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration," Energy, Elsevier, vol. 167(C), pages 211-223.
    8. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.
    9. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    10. Purushothaman Paneerselvam & Gnanamoorthi Venkadesan & Mebin Samuel Panithasan & Gurusamy Alaganathan & Sławomir Wierzbicki & Maciej Mikulski, 2021. "Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend," Energies, MDPI, vol. 14(10), pages 1-15, May.
    11. Karthickeyan, V., 2019. "Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis," Energy, Elsevier, vol. 176(C), pages 830-852.
    12. Sreekanth Manavalla & Abhishek Chaudhary & Shreyash Hemant Panchal & Saleel Ismail & Feroskhan M & T. M. Yunus Khan & Syed Javed & Mohammed Azam Ali, 2022. "Exergy Analysis of a CI Engine Operating on Ternary Biodiesel Blends," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    13. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    14. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    15. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    16. Singh, Thokchom Subhaschandra & Verma, Tikendra Nath, 2019. "Biodiesel production from Momordica Charantia (L.): Extraction and engine characteristics," Energy, Elsevier, vol. 189(C).
    17. Singh, Paramvir & Chauhan, S.R. & Goel, Varun, 2018. "Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends," Renewable Energy, Elsevier, vol. 125(C), pages 501-510.
    18. Thanigaivelan Vadivelu & Lavanya Ramanujam & Rajesh Ravi & Shivaprasad K. Vijayalakshmi & Manoranjitham Ezhilchandran, 2022. "An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen," Energies, MDPI, vol. 16(1), pages 1-13, December.
    19. Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
    20. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Alfredas Rimkus & Rafał Longwic, 2022. "Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions," Energies, MDPI, vol. 15(11), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6584-:d:461769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.