IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp707-714.html
   My bibliography  Save this article

Experimental study on an SI engine fuelled by gasoline/acetylene mixtures

Author

Listed:
  • İlhak, Mehmet İlhan
  • Akansu, Selahaddin Orhan
  • Kahraman, Nafiz
  • Ünalan, Sebahattin

Abstract

Internal combustion engines that are widely used as a power source in passenger and freight transport, individual transport vehicles, agricultural sector, fixed and mobile generators, are dependent on fossil fuels, especially oil. However, decrease in the oil reserves and environmental problems such as the global warming have compelled researchers to search for alternative fuels for internal combustion engines. In this study, the effects of the use of gasoline and acetylene mixtures on the overall performance of a spark ignition (SI) engine have been experimentally investigated. Experiments have been carried out on a four-stroke, four-cylinder, water-cooled SI engine and at stoichiometric conditions. Acetylene flow rates were fixed at 500 g/h and 1000 g/h in these experiments. The performance and emission parameters were studied by changing the load from 25% to the full load. The maximum acetylene content of the gasoline-acetylene mixture was 54% at 25% load, while this rate was 22.4% at the full load. Acetylene induction resulted in lower thermal efficiency at almost all loads. A decrease in hydrocarbon emissions was observed at all engine loads while NO emissions increased at low loads when compared to that of gasoline.

Suggested Citation

  • İlhak, Mehmet İlhan & Akansu, Selahaddin Orhan & Kahraman, Nafiz & Ünalan, Sebahattin, 2018. "Experimental study on an SI engine fuelled by gasoline/acetylene mixtures," Energy, Elsevier, vol. 151(C), pages 707-714.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:707-714
    DOI: 10.1016/j.energy.2018.03.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218305176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Changwei & Shi, Lei & Wang, Shuofeng & Cong, Xiaoyu & Su, Teng & Yu, Menghui, 2017. "Investigation on performance of a spark-ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions," Energy, Elsevier, vol. 126(C), pages 335-342.
    2. Lakshmanan, T. & Nagarajan, G., 2010. "Experimental investigation of timed manifold injection of acetylene in direct injection diesel engine in dual fuel mode," Energy, Elsevier, vol. 35(8), pages 3172-3178.
    3. Lakshmanan, T. & Nagarajan, G., 2011. "Study on using acetylene in dual fuel mode with exhaust gas recirculation," Energy, Elsevier, vol. 36(5), pages 3547-3553.
    4. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. İlhak, Mehmet İlhan & Tangöz, Selim & Akansu, Selahaddin Orhan & Kahraman, Nafiz, 2019. "An experimental investigation of the use of gasoline-acetylene mixtures at different excess air ratios in an SI engine," Energy, Elsevier, vol. 175(C), pages 434-444.
    2. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İlhak, Mehmet İlhan & Tangöz, Selim & Akansu, Selahaddin Orhan & Kahraman, Nafiz, 2019. "An experimental investigation of the use of gasoline-acetylene mixtures at different excess air ratios in an SI engine," Energy, Elsevier, vol. 175(C), pages 434-444.
    2. Wu, Horng-Wen & Wang, Ren-Hung & Chen, Ying-Chuan & Ou, Dung-Je & Chen, Teng-Yu, 2014. "Influence of port-inducted ethanol or gasoline on combustion and emission of a closed cycle diesel engine," Energy, Elsevier, vol. 64(C), pages 259-267.
    3. Wang, Wentao & Cheng, Yangfan & Wang, Rui & Wang, Hao & Wang, Quan & Liu, Rong & Ma, Honghao, 2022. "Flame behaviors and overpressure characteristics of the unconfined acetylene-air deflagration," Energy, Elsevier, vol. 246(C).
    4. Wu, Yuwen & Zheng, Quan & Weng, Chunsheng, 2018. "An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures," Energy, Elsevier, vol. 143(C), pages 554-561.
    5. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    6. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    7. Şöhret, Yasin & Gürbüz, Habib & Akçay, İsmail Hakkı, 2019. "Energy and exergy analyses of a hydrogen fueled SI engine: Effect of ignition timing and compression ratio," Energy, Elsevier, vol. 175(C), pages 410-422.
    8. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    9. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
    10. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation," Energy, Elsevier, vol. 61(C), pages 345-353.
    11. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.
    12. Tamilvanan, A. & Mohanraj, T. & Ashok, B. & Santhoshkumar, A., 2023. "Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization," Energy, Elsevier, vol. 264(C).
    13. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    14. Lakshmanan, T. & Nagarajan, G., 2011. "Study on using acetylene in dual fuel mode with exhaust gas recirculation," Energy, Elsevier, vol. 36(5), pages 3547-3553.
    15. Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
    16. Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C., 2010. "Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends," Energy, Elsevier, vol. 35(12), pages 5173-5184.
    17. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    18. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    19. Bahman Najafi & Sina Faizollahzadeh Ardabili & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and," Energies, MDPI, vol. 11(4), pages 1-18, April.
    20. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:707-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.