IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp345-353.html
   My bibliography  Save this article

Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

Author

Listed:
  • Yu, Byeonghun
  • Kum, Sung-Min
  • Lee, Chang-Eon
  • Lee, Seungro

Abstract

The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NOx concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased.

Suggested Citation

  • Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation," Energy, Elsevier, vol. 61(C), pages 345-353.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:345-353
    DOI: 10.1016/j.energy.2013.08.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lakshmanan, T. & Nagarajan, G., 2011. "Study on using acetylene in dual fuel mode with exhaust gas recirculation," Energy, Elsevier, vol. 36(5), pages 3547-3553.
    2. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    3. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    4. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system," Energy, Elsevier, vol. 49(C), pages 375-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    2. Wang, Liang-Chen & Chang, Li-Ming & Wang, Liang-Bi & Song, Ke-Wei & Zhang, Yong-Heng & Wu, Xiang & Lin, Zhi-Min, 2014. "Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon," Energy, Elsevier, vol. 78(C), pages 439-450.
    3. Lee, Chang-Eon & Yu, Byeonghun & Lee, Seungro, 2015. "An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)," Energy, Elsevier, vol. 86(C), pages 267-275.
    4. Khabbazian, Ghasem & Aminian, Javad & Khoshkhoo, Ramin Haghighi, 2022. "Experimental and numerical investigation of MILD combustion in a pilot-scale water heater," Energy, Elsevier, vol. 239(PA).
    5. Ruoyue Tang & Song Cheng, 2023. "Combustion Chemistry of Unsaturated Hydrocarbons Mixed with NO x : A Review with a Focus on Their Interactions," Energies, MDPI, vol. 16(13), pages 1-35, June.
    6. Song, Fuqiang & Wen, Zhi & Dong, Zhiyong & Wang, Enyu & Liu, Xunliang, 2017. "Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation," Energy, Elsevier, vol. 119(C), pages 497-503.
    7. Zhao, Hao & Dana, Alon G. & Zhang, Zunhua & Green, William H. & Ju, Yiguang, 2018. "Experimental and modeling study of the mutual oxidation of N-pentane and nitrogen dioxide at low and high temperatures in a jet stirred reactor," Energy, Elsevier, vol. 165(PB), pages 727-738.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najarnikoo, Mahdi & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Experimental study on the flame stability and color characterization of cylindrical premixed perforated burner of condensing boiler by image processing method," Energy, Elsevier, vol. 189(C).
    2. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    3. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    4. Cheolwoong Park & Taeyoung Kim & Gyubaek Cho & Janghee Lee, 2016. "Combustion and Emission Characteristics According to the Fuel Injection Ratio of an Ultra-Lean LPG Direct Injection Engine," Energies, MDPI, vol. 9(11), pages 1-12, November.
    5. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    6. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    7. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    8. Yong Hyun Choi & Joonsik Hwang, 2023. "Review on Plasma-Assisted Ignition Systems for Internal Combustion Engine Application," Energies, MDPI, vol. 16(4), pages 1-25, February.
    9. Soto, Felipe & Marques, Gian & Torres-Jiménez, E. & Vieira, Bráulio & Lacerda, André & Armas, Octavio & Guerrero-Villar, F., 2019. "A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9," Energy, Elsevier, vol. 176(C), pages 392-409.
    10. Zhao, Hao & Dana, Alon G. & Zhang, Zunhua & Green, William H. & Ju, Yiguang, 2018. "Experimental and modeling study of the mutual oxidation of N-pentane and nitrogen dioxide at low and high temperatures in a jet stirred reactor," Energy, Elsevier, vol. 165(PB), pages 727-738.
    11. Feng, Hongqing & Suo, Xinghan & Xiao, Shuwen & Chen, Xiaofan & Zhang, Zhisong & Gao, Ning & Zheng, Zunqing, 2023. "Numerical simulation on the effects of n-butanol combined with intake dilution on engine knock," Energy, Elsevier, vol. 271(C).
    12. İlhak, Mehmet İlhan & Akansu, Selahaddin Orhan & Kahraman, Nafiz & Ünalan, Sebahattin, 2018. "Experimental study on an SI engine fuelled by gasoline/acetylene mixtures," Energy, Elsevier, vol. 151(C), pages 707-714.
    13. Zhiqiang Li & Jing Qin & Yiqiang Pei & Kai Zhong & Zhiyong Zhang & Jian Sun, 2023. "The Lean-Burn Limit Extending Experiment on Gasoline Engine with Dual Injection Strategy and High Power Ignition System," Energies, MDPI, vol. 16(15), pages 1-16, July.
    14. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    15. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
    16. Wu, Horng-Wen & Wang, Ren-Hung & Chen, Ying-Chuan & Ou, Dung-Je & Chen, Teng-Yu, 2014. "Influence of port-inducted ethanol or gasoline on combustion and emission of a closed cycle diesel engine," Energy, Elsevier, vol. 64(C), pages 259-267.
    17. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    18. Khabbazian, Ghasem & Aminian, Javad & Khoshkhoo, Ramin Haghighi, 2022. "Experimental and numerical investigation of MILD combustion in a pilot-scale water heater," Energy, Elsevier, vol. 239(PA).
    19. Gong, Changming & Zhang, Zilei & Sun, Jingzhen & Chen, Yulin & Liu, Fenghua, 2020. "Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition," Energy, Elsevier, vol. 205(C).
    20. Costa, M. & Marchitto, L. & Merola, S.S. & Sorge, U., 2014. "Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging," Energy, Elsevier, vol. 77(C), pages 88-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:345-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.