IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010849.html
   My bibliography  Save this article

Mixed-frequency grey prediction model with fractional lags for electricity demand and estimation of coal power phase-out scale

Author

Listed:
  • Gou, Xiaoyi
  • Mi, Chuanmin
  • Zeng, Bo

Abstract

Accurate medium-term and long-term electricity demand forecasting is essential for a structured phase-out of coal power plants and the advancement of a low-carbon power sector. To this end, a novel fractional lag-based mixed-frequency discrete grey model (FMDGM(1,N)) that integrates high-frequency data through the Nakagami function is proposed, enabling comprehensive utilization of multi-frequency features and addressing the limitations of traditional single-frequency electricity demand forecasting frameworks. Unlike conventional mixed-frequency grey prediction models relying on integer lag parameters, the proposed model introduces mathematical functions to capture developmental trends between adjacent time points, successfully extending integer lag parameters into the fractional domain. This innovation enhances model performance and allows for more accurate representation of lag effects among electricity demand drivers. Experimental results demonstrate the model's superior performance and robustness across various data scenarios, significantly outperforming other grey prediction models, regression models, and neural network models in electricity demand forecasting. The forecast indicates that China's electricity demand will reach 11816 TWh by 2030, with a coal power capacity of 1238 GW. This study provides a robust tool for energy planning and low-carbon transition.

Suggested Citation

  • Gou, Xiaoyi & Mi, Chuanmin & Zeng, Bo, 2025. "Mixed-frequency grey prediction model with fractional lags for electricity demand and estimation of coal power phase-out scale," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010849
    DOI: 10.1016/j.energy.2025.135442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    2. Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
    3. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    4. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    5. Wang, Delu & Mao, Jinqi & Shi, Xunpeng & Li, Chunxiao & Chen, Fan, 2024. "A planning model for coal power exit scales based on minimizing idle and shortage losses: A case study of China," Energy Economics, Elsevier, vol. 138(C).
    6. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    7. Li, Biao & Xie, Bai-Chen & Yu, Xiao-Chen & She, Zhen-Yu & Hu, Wenhao, 2025. "Does the incentive policy for renewable energy grid connection affect the technical efficiency of power grid companies? Empirical analysis based on China and Japan," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 28-47.
    8. Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).
    9. Jin, Haowei & Guo, Jue & Tang, Lei & Du, Pei, 2024. "Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix," Energy, Elsevier, vol. 286(C).
    10. Wang, Yong & Yang, Rui & Zhang, Juan & Sun, Lang & Xiao, Wenlian & Saxena, Akash, 2024. "A novel structure adaptive discrete grey Bernoulli prediction model and its applications in energy consumption and production," Energy, Elsevier, vol. 291(C).
    11. Zeng, Bo & Yin, Fengfeng & Yang, Yingjie & Wu, You & Mao, Cuiwei, 2023. "Application of the novel-structured multivariable grey model with various orders to forecast the bending strength of concrete," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Wu, Cong & Li, Jiaxuan & Liu, Wenjin & He, Yuzhe & Nourmohammadi, Samad, 2023. "Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm," Applied Energy, Elsevier, vol. 345(C).
    13. Vaninsky, Alexander, 2007. "Erratum to "Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis" [Energy Economics, 28(2006), 326-338]," Energy Economics, Elsevier, vol. 29(3), pages 1-1, May.
    14. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    15. Ruan, Guangchun & Wu, Jiahan & Zhong, Haiwang & Xia, Qing & Xie, Le, 2021. "Quantitative assessment of U.S. bulk power systems and market operations during the COVID-19 pandemic," Applied Energy, Elsevier, vol. 286(C).
    16. Zhou, Wenhao & Zeng, Bo & Wang, Jianzhou & Luo, Xiaoshuang & Liu, Xianzhou, 2021. "Forecasting Chinese carbon emissions using a novel grey rolling prediction model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
    18. Zeng, Bo & He, Chengxiang & Mao, Cuiwei & Wu, You, 2023. "Forecasting China's hydropower generation capacity using a novel grey combination optimization model," Energy, Elsevier, vol. 262(PA).
    19. Sun, Yeran & Wang, Shaohua & Zhang, Xucai & Chan, Ting On & Wu, Wenjie, 2021. "Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data," Energy, Elsevier, vol. 226(C).
    20. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    2. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    3. Xia, Lin & Ren, Youyang & Wang, Yuhong & Fu, Yiyang & zhou, Ke, 2024. "A novel dynamic structural adaptive multivariable grey model and its application in China's solar energy generation forecasting," Energy, Elsevier, vol. 312(C).
    4. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Yang, Zhongsen & Wang, Yong & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Sapnken, Flavian Emmanuel & Narayanan, Govindasami & Li, Hong-Li, 2025. "A novel fractional order grey Euler model and its application in clean energy prediction," Energy, Elsevier, vol. 322(C).
    6. Yaxin Tian & Xiang Ren & Keke Li & Xiangqian Li, 2025. "Carbon Dioxide Emission Forecast: A Review of Existing Models and Future Challenges," Sustainability, MDPI, vol. 17(4), pages 1-29, February.
    7. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    8. Wang, Yong & Wang, Yunhui & Zhang, Zejia & Sun, Lang & Yang, Rui & Sapnken, Flavian Emmanuel & Xiao, Wenlian, 2025. "A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction," Energy, Elsevier, vol. 316(C).
    9. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    10. Wang, Yong & Sun, Lang & Yang, Rui & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Yang, Mou, 2025. "A novel variable weight accumulation multiple power-law grey Bernoulli model and its application in China's electricity supply and consumption prediction," Energy, Elsevier, vol. 317(C).
    11. Wang, Junjie & Huang, Wenyu & Ding, Yuanping & Dang, Yaoguo & Ye, Li, 2025. "Forecasting the electric power load based on a novel prediction model coupled with accumulative time-delay effects and periodic fluctuation characteristics," Energy, Elsevier, vol. 317(C).
    12. Wu, Wen-Ze & Xu, Jie & Xie, Wanli & Zhang, Tao, 2025. "An innovative fractional grey system model and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 68-79.
    13. Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
    14. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    15. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    16. Wang, Yong & Yang, Rui & Sun, Lang & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Li, Hong-Li, 2025. "A novel time-lag discrete grey Euler model and its application in renewable energy generation prediction," Renewable Energy, Elsevier, vol. 245(C).
    17. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    18. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    19. Zhang, Weiwei & Wang, Yuanrong & Chen, Ximei & Li, Yunzhuo & Dai, He, 2025. "Exploring the diffusion mechanisms of CCS-EOR technology: A quadripartite evolutionary game," Energy, Elsevier, vol. 320(C).
    20. Magazzino, Cosimo & Drago, Carlo & Schneider, Nicolas, 2023. "Evidence of supply security and sustainability challenges in Nigeria’s power sector," Utilities Policy, Elsevier, vol. 82(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.