IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923001017.html
   My bibliography  Save this article

Application of the novel-structured multivariable grey model with various orders to forecast the bending strength of concrete

Author

Listed:
  • Zeng, Bo
  • Yin, Fengfeng
  • Yang, Yingjie
  • Wu, You
  • Mao, Cuiwei

Abstract

Bending strength of concrete is one of the significant indexes to measure the mechanical properties of concrete. A reliable prediction about the bending strength of concrete is of great importance to maintain the health state and service life of concrete. However, it is difficult to obtain reliable data of large samples due to the high cost, serious destructiveness and complex influencing factors of concrete bending strength test data collection. In view of this, based on the multivariable grey prediction model whose modeling object is small data, we construct a new novel-structured multivariable grey prediction model with various orders for predicting the bending strength of concrete. It defines and optimizes the accumulative orders differentially and introduces a nonlinear correction term to expand the model structure. Then, the bending strength of concrete is modeled using the new model, and its comprehensive error is only 0.035 %, which is much smaller than the conventional NSGM(1,N) and FMGM(1,N) models (5.232 % and 2.624 %, respectively). The findings provide a new modeling method for the prediction of concrete bending strength in areas with large temperature difference, and have significance for enriching and improving the methodologies of grey prediction models.

Suggested Citation

  • Zeng, Bo & Yin, Fengfeng & Yang, Yingjie & Wu, You & Mao, Cuiwei, 2023. "Application of the novel-structured multivariable grey model with various orders to forecast the bending strength of concrete," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001017
    DOI: 10.1016/j.chaos.2023.113200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wenhao & Zeng, Bo & Wang, Jianzhou & Luo, Xiaoshuang & Liu, Xianzhou, 2021. "Forecasting Chinese carbon emissions using a novel grey rolling prediction model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenguo Xu & Wanli Xie & Caixia Liu, 2023. "An Optimized Fractional Nonlinear Grey System Model and Its Application in the Prediction of the Development Scale of Junior Secondary Schools in China," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    2. Huiping Wang & Zhun Zhang, 2022. "Forecasting CO 2 Emissions Using A Novel Grey Bernoulli Model: A Case of Shaanxi Province in China," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    3. Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).
    4. Li, Zekai & Hu, Xi & Guo, Huan & Xiong, Xin, 2023. "A novel Weighted Average Weakening Buffer Operator based Fractional order accumulation Seasonal Grouping Grey Model for predicting the hydropower generation," Energy, Elsevier, vol. 277(C).
    5. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    6. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    8. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    9. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    10. Zhenfen Wu & Zhe Wang & Qiliang Yang & Changyun Li, 2024. "Prediction Model of Electric Power Carbon Emissions Based on Extended System Dynamics," Energies, MDPI, vol. 17(2), pages 1-22, January.
    11. Zhicong Zhang & Hao Xie & Jubing Zhang & Xinye Wang & Jiayu Wei & Xibin Quan, 2022. "Prediction and Trend Analysis of Regional Industrial Carbon Emission in China: A Study of Nanjing City," IJERPH, MDPI, vol. 19(12), pages 1-23, June.
    12. Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).
    13. Ke Liu & Xinyue Xie & Mingxue Zhao & Qian Zhou, 2022. "Carbon Emissions in the Yellow River Basin: Analysis of Spatiotemporal Evolution Characteristics and Influencing Factors Based on a Logarithmic Mean Divisia Index (LMDI) Decomposition Method," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    14. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Cheng Zhang & Xiong Zou & Chuan Lin, 2023. "Carbon Footprint Prediction of Thermal Power Industry under the Dual-Carbon Target: A Case Study of Zhejiang Province, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    16. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    17. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    18. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    19. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    20. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923001017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.