IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002538.html
   My bibliography  Save this article

A novel conformable fractional logistic grey model and its application to natural gas and electricity consumption in China

Author

Listed:
  • Li, Hui
  • Duan, Huiming
  • Song, Yuxin
  • Wang, Xingwu

Abstract

In this paper, a novel conformable fractional logistic grey model is established by using the logistic model, which can effectively represent the curvilinear relationship of energy data over time, has a certain historical reproduction ability and short- and medium-term prediction ability, and uses a series of excellent properties, such as simplicity and intuition, of conformable fractional-order accumulation. On the one hand, the new model improves the stability, reliability, and prediction accuracy of the grey model. On the other hand, based on the different modelling objects, the parameters of the model are dynamically adjusted, which can solve the problem of the two fixed parameters of the original logistic model affecting the accuracy of the model. Second, the least squares estimation technique is used to estimate the parameters of the new model, the integral transform is used to obtain the time response of the model, and the particle swarm algorithm is used to optimize the order of the fractional order. Finally, the new model is applied to China's natural gas and electricity consumption. The effectiveness of the new model is analysed from four different perspectives by establishing several different objects of natural gas and electricity consumption.

Suggested Citation

  • Li, Hui & Duan, Huiming & Song, Yuxin & Wang, Xingwu, 2025. "A novel conformable fractional logistic grey model and its application to natural gas and electricity consumption in China," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002538
    DOI: 10.1016/j.renene.2025.122591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
    2. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    3. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    4. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    5. Tomaž Čegovnik & Andrej Dobrovoljc & Janez Povh & Matic Rogar & Pavel Tomšič, 2023. "Electricity consumption prediction using artificial intelligence," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 833-851, September.
    6. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    7. Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
    8. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    10. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    11. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    12. Tuan, Nguyen Huy & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A mathematical model for COVID-19 transmission by using the Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    15. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    16. Ye, Lili & Xie, Naiming & Boylan, John E. & Shang, Zhongju, 2024. "Forecasting seasonal demand for retail: A Fourier time-varying grey model," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1467-1485.
    17. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    18. Zhang, Yonghong & Li, Shouwei & Li, Jingwei & Tang, Xiaoyu, 2022. "A time power-based grey model with Caputo fractional derivative and its application to the prediction of renewable energy consumption," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yong & Yang, Zhongsen & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Li, Hong-Li & Narayanan, Govindasami & Sapnken, Flavian Emmanuel, 2025. "A novel fractional nonlinear discrete grey model with kernel-markov adaptation for clean energy forecasting," Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Yang, Zhongsen & Wang, Yong & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Sapnken, Flavian Emmanuel & Narayanan, Govindasami & Li, Hong-Li, 2025. "A novel fractional order grey Euler model and its application in clean energy prediction," Energy, Elsevier, vol. 322(C).
    3. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    4. Wang, Yong & Yang, Zhongsen & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Li, Hong-Li & Narayanan, Govindasami & Sapnken, Flavian Emmanuel, 2025. "A novel fractional nonlinear discrete grey model with kernel-markov adaptation for clean energy forecasting," Energy, Elsevier, vol. 323(C).
    5. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    6. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    7. He, Jing & Mao, Shuhua & Kang, Yuxiao, 2023. "Augmented fractional accumulation grey model and its application: Class ratio and restore error perspectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 220-247.
    8. Wang, Yong & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Zhongsen & Xiao, Wenlian & Li, Hong-Li & Narayanan, Govindasami & Sapnken, Flavian Emmanuel, 2025. "A novel structural adaptive discrete grey Euler model and its application in clean energy production and consumption," Energy, Elsevier, vol. 323(C).
    9. Wang, Yong & Sun, Lang & Yang, Rui & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Yang, Mou, 2025. "A novel variable weight accumulation multiple power-law grey Bernoulli model and its application in China's electricity supply and consumption prediction," Energy, Elsevier, vol. 317(C).
    10. Wang, Yong & Zhang, Zejia & Wang, Yunhui & Sun, Lang & Yang, Rui & He, Wenao & Sapnken, Flavian Emmanuel & Li, Hong-Li, 2025. "A novel time-varying parameters structural adaptive Hausdorff fractional discrete grey model and its application in renewable energy production and consumption prediction," Energy, Elsevier, vol. 318(C).
    11. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    12. Liu, Yitong & Xue, Dingyu & Yang, Yang, 2021. "Two types of conformable fractional grey interval models and their applications in regional electricity consumption prediction," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Wu, Wen-Ze & Xu, Jie & Xie, Wanli & Zhang, Tao, 2025. "An innovative fractional grey system model and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 230(C), pages 68-79.
    14. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    15. Wang, Yong & Yang, Rui & Sun, Lang & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Li, Hong-Li, 2025. "A novel time-lag discrete grey Euler model and its application in renewable energy generation prediction," Renewable Energy, Elsevier, vol. 245(C).
    16. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    17. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    18. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
    20. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.