IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030244.html
   My bibliography  Save this article

A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption

Author

Listed:
  • Ma, Xin
  • Deng, Yanqiao
  • Ma, Minda

Abstract

Natural gas production (NGP) and consumption (NGC) always exhibit high nonlinearity, posing challenges for accurate small-sample forecasting. In this work, a novel kernel ridge grey system model with an extended parametric Morlet wavelet (GMW-KRGM) is proposed by integrating the kernel ridge regularization and grey system modelling within a partially linear regression framework and trained by the conjugate gradient method to mitigate the ill-posed problem. Besides, a weighted multi-objective optimization strategy is designed for model hyperparameter optimization and solved by the grey wolf optimizer (GWO). Six real-world NGP and NGC forecasting cases are carried out and empirical results demonstrate that the proposed GMW-KRGM model with optimal hyperparameters solved by GWO always yields superior forecasting performance than the other 2 machine learning models and 7 conventional grey system benchmarks with out-of-sample mean average percentage error (MAPE) improved in 7.4245%–91.8392% and 14.7303%–42.67% on average, respectively and yields more precise forecasting accuracy with fast and stable convergence than the other 5 optimization algorithms with improved MAPE range from 9.5608% to 48.2584%, indicating that the proposed model holds the capability to effectively deal with the nonlinear complex system and has great potential in nonlinear small sample forecasting.

Suggested Citation

  • Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030244
    DOI: 10.1016/j.energy.2023.129630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.