IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7437-d937991.html
   My bibliography  Save this article

Multi-Step Ahead Natural Gas Consumption Forecasting Based on a Hybrid Model: Case Studies in The Netherlands and the United Kingdom

Author

Listed:
  • Longfeng Zhang

    (School of Science, Southwest University of Science and Technology, Mianyang 621010, China)

  • Xin Ma

    (School of Science, Southwest University of Science and Technology, Mianyang 621010, China
    Center for Information Management and Service Studies of Sichuan, Mianyang 621010, China)

  • Hui Zhang

    (School of Science, Southwest University of Science and Technology, Mianyang 621010, China)

  • Gaoxun Zhang

    (School of Science, Southwest University of Science and Technology, Mianyang 621010, China)

  • Peng Zhang

    (School of Science, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

With worldwide activities of carbon neutrality, clean energy is playing an important role these days. Natural gas (NG) is one of the most efficient clean energies with less harmful emissions and abundant reservoirs. This work aims at developing a swarm intelligence-based tool for NG forecasting to make more convincing projections of future energy consumption, combining Extreme Gradient Boosting (XGBoost) and the Salp Swarm Algorithm (SSA). The XGBoost is used as the core model in a nonlinear auto-regression procedure to make multi-step ahead forecasting. A cross-validation scheme is adopted to build a nonlinear programming problem for optimizing the most sensitive hyperparameters of the XGBoost, and then the nonlinear optimization is solved by the SSA. Case studies of forecasting the Natural gas consumption (NGC) in the United Kingdom (UK) and Netherlands are presented to illustrate the performance of the proposed hybrid model in comparison with five other intelligence optimization algorithms and two other decision tree-based models (15 hybrid schemes in total) in 6 subcases with different forecasting steps and time lags. The results show that the SSA outperforms the other 5 algorithms in searching the optimal parameters of XGBoost and the hybrid model outperforms all the other 15 hybrid models in all the subcases with average MAPE 4.9828% in NGC forecasting of UK and 9.0547% in NGC forecasting of Netherlands, respectively. Detailed analysis of the performance and properties of the proposed model is also summarized in this work, which indicates it has high potential in NGC forecasting and can be expected to be used in a wider range of applications in the future.

Suggested Citation

  • Longfeng Zhang & Xin Ma & Hui Zhang & Gaoxun Zhang & Peng Zhang, 2022. "Multi-Step Ahead Natural Gas Consumption Forecasting Based on a Hybrid Model: Case Studies in The Netherlands and the United Kingdom," Energies, MDPI, vol. 15(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7437-:d:937991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vivoda, Vlado, 2022. "LNG export diversification and demand security: A comparative study of major exporters," Energy Policy, Elsevier, vol. 170(C).
    2. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    3. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    4. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    5. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    6. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    7. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    8. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    9. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    10. Özmen, Ayşe & Yılmaz, Yavuz & Weber, Gerhard-Wilhelm, 2018. "Natural gas consumption forecast with MARS and CMARS models for residential users," Energy Economics, Elsevier, vol. 70(C), pages 357-381.
    11. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    12. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    2. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
    3. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    4. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
    5. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    6. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Lu, Xinyi & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Shahzad, Khurram & Rashid, Muhammad Imtiaz & Ali, Arshid Mahmood & Liao, Qi & Wang, Bohong, 2022. "A hybrid deep learning framework for predicting daily natural gas consumption," Energy, Elsevier, vol. 257(C).
    7. Tomasz Cieślik & Piotr Narloch & Adam Szurlej & Krzysztof Kogut, 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland," Energies, MDPI, vol. 15(4), pages 1-18, February.
    8. Zhou, Huimin & Dang, Yaoguo & Yang, Yingjie & Wang, Junjie & Yang, Shaowen, 2023. "An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles," Energy, Elsevier, vol. 263(PC).
    9. Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
    10. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    11. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    13. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    14. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    15. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
    16. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    17. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
    18. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    19. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
    20. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7437-:d:937991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.