IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017747.html
   My bibliography  Save this article

A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction

Author

Listed:
  • Wang, Yong
  • Sun, Lang
  • Yang, Rui
  • He, Wenao
  • Tang, Yanbing
  • Zhang, Zejia
  • Wang, Yunhui
  • Sapnken, Flavian Emmanuel

Abstract

The importance of energy in modern life is self-evident. Forecasting future energy consumption can help governments and businesses formulate reasonable energy supply and demand policies to ensure energy security and economic development. To this end, a novel adaptive fractional grey model with fractional derivative was established. Firstly, a novel fractional cumulative operator is proposed that operates in a fractional-order domain and has the potential to alternate between giving priority to new or old information. This method facilitates the effective utilization of data when working with a limited number of samples. Secondly, the model's adaptability and flexibility were improved through the introduction of a nonlinear term in the whitening equation; and the fractional derivative was introduced into the whitening equation to solve the problem of poor adaptability of existing integer-order derivative to nonlinearity and volatility. To enhance the model’s performance, the study utilized the Grey Wolf Optimization (GWO) algorithm to optimize the model parameters. Furthermore, the robustness of the proposed model was verified using Monte Carlo simulations and probability density analysis; and the experimental results indicated that the proposed model exhibits better robustness. Finally, three actual cases of China’s total energy consumption, total crude oil consumption and domestic heat consumption are predicted.

Suggested Citation

  • Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017747
    DOI: 10.1016/j.energy.2023.128380
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    2. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    3. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    4. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    5. Zhang, Zhenhua & Wang, Jing & Feng, Chao & Chen, Xi, 2023. "Do pilot zones for green finance reform and innovation promote energy savings? Evidence from China," Energy Economics, Elsevier, vol. 124(C).
    6. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    7. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
    8. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    9. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Wenqing Wu & Xin Ma & Bo Zeng & Yuanyuan Zhang & Wanpeng Li, 2021. "Forecasting short-term solar energy generation in Asia Pacific using a nonlinear grey Bernoulli model with time power term," Energy & Environment, , vol. 32(5), pages 759-783, August.
    11. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    12. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    13. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yong & Wang, Yunhui & Zhang, Zejia & Sun, Lang & Yang, Rui & Sapnken, Flavian Emmanuel & Xiao, Wenlian, 2025. "A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction," Energy, Elsevier, vol. 316(C).
    2. Wang, Yong & Yang, Rui & Sun, Lang & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Li, Hong-Li, 2025. "A novel time-lag discrete grey Euler model and its application in renewable energy generation prediction," Renewable Energy, Elsevier, vol. 245(C).
    3. Ke Zhou & Ziji Zhao & Lin Xia & Jinghua Wu, 2024. "Advancing Grey Modeling with a Novel Time-Varying Approach for Predicting Solar Energy Generation in the United States," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
    4. Yao Lu, 2023. "The Maximum Correntropy Criterion-Based Identification for Fractional-Order Systems under Stable Distribution Noises," Mathematics, MDPI, vol. 11(20), pages 1-18, October.
    5. Yu, Yue & Xiao, Xinping & Gao, Mingyun & Rao, Congjun, 2025. "Dynamic time-delay discrete grey model based on GOWA operator for renewable energy generation cost prediction," Renewable Energy, Elsevier, vol. 242(C).
    6. Yang, Zhongsen & Wang, Yong & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Sapnken, Flavian Emmanuel & Narayanan, Govindasami & Li, Hong-Li, 2025. "A novel fractional order grey Euler model and its application in clean energy prediction," Energy, Elsevier, vol. 322(C).
    7. Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
    8. Yufan Liang & Yu Song & Zuxu Chen, 2025. "Correlation Effects, Driving Forces and Evolutionary Paths of Cross-Industry Transfer of Energy Consumption in China: A New Analytical Framework," Energies, MDPI, vol. 18(12), pages 1-21, June.
    9. Li, Xuemei & Shi, Yansong & Zhao, Yufeng & Wu, Yajie & Zhou, Shiwei, 2024. "Seasonal waste, geotherm, nuclear, wood net power generations forecasting using a novel hybrid grey model with seasonally buffered and time-varying effect," Applied Energy, Elsevier, vol. 368(C).
    10. Wang, Yong & Yang, Zhongsen & Luo, Yongxian & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2024. "A novel structural adaptive Caputo fractional order derivative multivariate grey model and its application in China's energy production and consumption prediction," Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhongsen & Wang, Yong & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Sapnken, Flavian Emmanuel & Narayanan, Govindasami & Li, Hong-Li, 2025. "A novel fractional order grey Euler model and its application in clean energy prediction," Energy, Elsevier, vol. 322(C).
    2. Wang, Yong & Yang, Zhongsen & Fan, Neng & Wen, Shixiong & Kuang, Wenyu & Yang, Mou & Li, Hong-Li & Narayanan, Govindasami & Sapnken, Flavian Emmanuel, 2025. "A novel fractional nonlinear discrete grey model with kernel-markov adaptation for clean energy forecasting," Energy, Elsevier, vol. 323(C).
    3. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    4. Wang, Yong & Wang, Yunhui & Zhang, Zejia & Sun, Lang & Yang, Rui & Sapnken, Flavian Emmanuel & Xiao, Wenlian, 2025. "A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction," Energy, Elsevier, vol. 316(C).
    5. Wang, Yong & Sun, Lang & Yang, Rui & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Yang, Mou, 2025. "A novel variable weight accumulation multiple power-law grey Bernoulli model and its application in China's electricity supply and consumption prediction," Energy, Elsevier, vol. 317(C).
    6. Wang, Yong & Zhang, Zejia & Wang, Yunhui & Sun, Lang & Yang, Rui & He, Wenao & Sapnken, Flavian Emmanuel & Li, Hong-Li, 2025. "A novel time-varying parameters structural adaptive Hausdorff fractional discrete grey model and its application in renewable energy production and consumption prediction," Energy, Elsevier, vol. 318(C).
    7. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    8. Wang, Yong & Yang, Rui & Sun, Lang & Yang, Zhongsen & Sapnken, Flavian Emmanuel & Li, Hong-Li, 2025. "A novel time-lag discrete grey Euler model and its application in renewable energy generation prediction," Renewable Energy, Elsevier, vol. 245(C).
    9. Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
    10. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    11. Wang, Yong & Yang, Zhongsen & Luo, Yongxian & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2024. "A novel structural adaptive Caputo fractional order derivative multivariate grey model and its application in China's energy production and consumption prediction," Energy, Elsevier, vol. 312(C).
    12. Wang, Yong & He, Xinbo & Zhou, Ying & Luo, Yongxian & Tang, Yanbing & Narayanan, Govindasami, 2024. "A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction," Energy, Elsevier, vol. 302(C).
    13. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Li, Hui & Duan, Huiming & Song, Yuxin & Wang, Xingwu, 2025. "A novel conformable fractional logistic grey model and its application to natural gas and electricity consumption in China," Renewable Energy, Elsevier, vol. 243(C).
    15. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    17. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    18. Huiping Wang & Zhun Zhang, 2022. "Forecasting CO 2 Emissions Using A Novel Grey Bernoulli Model: A Case of Shaanxi Province in China," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    19. He, Jing & Mao, Shuhua & Kang, Yuxiao, 2023. "Augmented fractional accumulation grey model and its application: Class ratio and restore error perspectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 220-247.
    20. Xie, Wanli & Liu, Caixia & Wu, Wen-Ze & Li, Weidong & Liu, Chong, 2020. "Continuous grey model with conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.