IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v209y2023icp220-247.html
   My bibliography  Save this article

Augmented fractional accumulation grey model and its application: Class ratio and restore error perspectives

Author

Listed:
  • He, Jing
  • Mao, Shuhua
  • Kang, Yuxiao

Abstract

Compared with the traditional first-order accumulation, fractional accumulation is a more efficient data transformation technique, whose order can be determined by the original sequence thus the smoothness and concavity of the data can be effectively improved, but this data-driven property affects the reliability and stability of the prediction while bringing high fitting accuracy. At the same time, the class ratio of the original data and the restore error of the grey model can reflect the degree of matching between the data and the model. Therefore, we summarize a set of methods to study these two perspectives by means of matrix decomposition, function analysis and numerical simulation, and then introduce the augmented fractional accumulation grey model with order optimization constraints. Through empirical test and case analysis, the established model whose modeling process is more rigorous has greater prediction effect and higher modeling efficiency, and can be extended to different fractional accumulated generating operators.

Suggested Citation

  • He, Jing & Mao, Shuhua & Kang, Yuxiao, 2023. "Augmented fractional accumulation grey model and its application: Class ratio and restore error perspectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 220-247.
  • Handle: RePEc:eee:matcom:v:209:y:2023:i:c:p:220-247
    DOI: 10.1016/j.matcom.2023.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423000812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    4. Zhang, Yonghong & Mao, Shuhua & Kang, Yuxiao & Wen, Jianghui, 2021. "Fractal derivative fractional grey Riccati model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    6. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    7. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    8. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    9. Kang, Yuxiao & Mao, Shuhua & Zhang, Yonghong, 2022. "Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 149-174.
    10. Zhu, Xiaoyue & Dang, Yaoguo & Ding, Song, 2020. "Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China," Energy, Elsevier, vol. 190(C).
    11. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    12. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    13. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    14. Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    2. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    3. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    4. Zhenguo Xu & Wanli Xie & Caixia Liu, 2023. "An Optimized Fractional Nonlinear Grey System Model and Its Application in the Prediction of the Development Scale of Junior Secondary Schools in China," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    5. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    6. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    7. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    8. Zhou, Chenyu & Shen, Yun & Wu, Haixin & Wang, Jianhong, 2022. "Using fractional discrete Verhulst model to forecast Fujian's electricity consumption in China," Energy, Elsevier, vol. 255(C).
    9. Yang, Yang & Wang, Xiuqin, 2022. "A novel modified conformable fractional grey time-delay model for power generation prediction," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    11. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    12. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    13. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    14. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    15. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    17. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    18. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    19. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
    20. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:209:y:2023:i:c:p:220-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.