IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225003172.html
   My bibliography  Save this article

A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction

Author

Listed:
  • Wang, Yong
  • Wang, Yunhui
  • Zhang, Zejia
  • Sun, Lang
  • Yang, Rui
  • Sapnken, Flavian Emmanuel
  • Xiao, Wenlian

Abstract

Oil is an important energy source and industrial raw material that has profound impacts on the world's economy, politics, environment, and society. Therefore, accurate prediction of oil reserves can provide significant assistance to countries in terms of oil extraction, price adjustments, and the formulation of other energy policies. In this regard, this article proposes a novel fractional-order nuclear regularized non-homogeneous grey Riccati prediction model. The novel grey model synergistically combines the Hausdorff fractional-order accumulation operator and Grunwald-Letnikov fractional-order derivative, resulting in increased flexibility and streamlined computational procedures. The temporal response function and recursive formulation of this novel model are obtained by employing the forward difference technique. The recursive relationship between binomials in the discrete solution avoids function computation, simplifying the calculations. Nonlinear terms and a combination represented by Lagrange multipliers and kernel functions are introduced to simulate the nonlinearity and volatility characteristics of petroleum reserves, enhancing the adaptability of the grey prediction model to nonlinear and volatile time series. Through comparative experiments designed with optimization algorithms, the model exhibits high flexibility and strong adaptability. To illustrate the model's performance, two examples of petroleum reserve prediction compare the new model with traditional GM(1,1) grey model, fractional-order grey model, and kernel-based grey model. Based on the experimental results, it is evident that the proposed model surpasses other rival models in terms of fitting accuracy and prediction precision. Monte Carlo simulation and probability density analysis further indicate the model's good predictive performance and high robustness. Based on these prediction results, relevant recommendations can be provided to decision-makers for future oil extraction and utilization.

Suggested Citation

  • Wang, Yong & Wang, Yunhui & Zhang, Zejia & Sun, Lang & Yang, Rui & Sapnken, Flavian Emmanuel & Xiao, Wenlian, 2025. "A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225003172
    DOI: 10.1016/j.energy.2025.134675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yong & He, Xinbo & Zhou, Ying & Luo, Yongxian & Tang, Yanbing & Narayanan, Govindasami, 2024. "A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction," Energy, Elsevier, vol. 302(C).
    2. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    3. Zhang, Yonghong & Mao, Shuhua & Kang, Yuxiao & Wen, Jianghui, 2021. "Fractal derivative fractional grey Riccati model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    5. Ding, Song & Ye, Juntao & Cai, Zhijian, 2024. "Multi-step carbon emissions forecasting using an interpretable framework of new data preprocessing techniques and improved grey multivariable convolution model," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    6. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    7. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    9. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    10. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    11. Chen, W., 2006. "Time–space fabric underlying anomalous diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 923-929.
    12. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    13. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
    14. Wang, Yong & Yang, Rui & Zhang, Juan & Sun, Lang & Xiao, Wenlian & Saxena, Akash, 2024. "A novel structure adaptive discrete grey Bernoulli prediction model and its applications in energy consumption and production," Energy, Elsevier, vol. 291(C).
    15. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    16. Ding, Song & Hu, Jiaqi & Lin, Qianqian, 2023. "Accurate forecasts and comparative analysis of Chinese CO2 emissions using a superior time-delay grey model," Energy Economics, Elsevier, vol. 126(C).
    17. Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
    18. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    19. Zhu, Xiaoyue & Dang, Yaoguo & Ding, Song, 2020. "Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China," Energy, Elsevier, vol. 190(C).
    20. Xiong, Ping-ping & Dang, Yao-guo & Yao, Tian-xiang & Wang, Zheng-xin, 2014. "Optimal modeling and forecasting of the energy consumption and production in China," Energy, Elsevier, vol. 77(C), pages 623-634.
    21. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    22. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
    2. Wang, Yong & Yang, Zhongsen & Luo, Yongxian & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2024. "A novel structural adaptive Caputo fractional order derivative multivariate grey model and its application in China's energy production and consumption prediction," Energy, Elsevier, vol. 312(C).
    3. Wang, Yong & He, Xinbo & Zhou, Ying & Luo, Yongxian & Tang, Yanbing & Narayanan, Govindasami, 2024. "A novel structure adaptive grey seasonal model with data reorganization and its application in solar photovoltaic power generation prediction," Energy, Elsevier, vol. 302(C).
    4. He, Xinbo & Wang, Yong & Zhang, Yuyang & Ma, Xin & Wu, Wenqing & Zhang, Lei, 2022. "A novel structure adaptive new information priority discrete grey prediction model and its application in renewable energy generation forecasting," Applied Energy, Elsevier, vol. 325(C).
    5. Wang, Yong & Yang, Zhongsen & Ye, Lingling & Wang, Li & Zhou, Ying & Luo, Yongxian, 2023. "A novel self-adaptive fractional grey Euler model with dynamic accumulation order and its application in energy production prediction of China," Energy, Elsevier, vol. 265(C).
    6. Wang, Yong & Sun, Lang & Yang, Rui & He, Wenao & Tang, Yanbing & Zhang, Zejia & Wang, Yunhui & Sapnken, Flavian Emmanuel, 2023. "A novel structure adaptive fractional derivative grey model and its application in energy consumption prediction," Energy, Elsevier, vol. 282(C).
    7. Wang, Yong & Yang, Zhongsen & Wang, Li & Ma, Xin & Wu, Wenqing & Ye, Lingling & Zhou, Ying & Luo, Yongxian, 2022. "Forecasting China's energy production and consumption based on a novel structural adaptive Caputo fractional grey prediction model," Energy, Elsevier, vol. 259(C).
    8. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    9. He, Jing & Mao, Shuhua & Kang, Yuxiao, 2023. "Augmented fractional accumulation grey model and its application: Class ratio and restore error perspectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 220-247.
    10. Ding, Song & Li, Ruojin & Wu, Shu & Zhou, Weijie, 2021. "Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 298(C).
    11. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    12. Zhenguo Xu & Wanli Xie & Caixia Liu, 2023. "An Optimized Fractional Nonlinear Grey System Model and Its Application in the Prediction of the Development Scale of Junior Secondary Schools in China," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    13. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    15. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    16. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    17. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    18. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    19. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    20. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225003172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.