IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007694.html
   My bibliography  Save this article

Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms

Author

Listed:
  • Ding, Song
  • Cai, Zhijian
  • Qin, Xinghuan
  • Shen, Xingao

Abstract

In the pursuit of sustainable development, accurate renewable energy demand forecasting holds great significance for climate change mitigation and promoting sustainability. However, renewable energy forecasting has been consistently challenged by seasonality and nonlinearity. Identifying the periodic and nonlinear characteristics concealed within renewable energy sources accurately is still an unexplored problem. Consequently, an innovative nonlinear discrete seasonal grey model is proposed for renewable energy forecasting, which incorporates seasonal dummy variables and a power exponent term for handling the seasonality and nonlinear patterns in time series. Furthermore, an intelligent algorithm matching framework is proposed to augment the flexibility of the newly developed model. For practical purposes, the new methodology is contrasted against a range of benchmarks encompassing statistical, machine-learning, and traditional grey models in forecasting the quarterly total renewable energy consumption in the United States. The proposed model exhibits over 27% improvement rates over its counterparts, achieving the most superior predictive accuracies of 1.45%, 39.27, and 0.79 in MAPEP, RMSEP, and MASEP metrics, respectively. Furthermore, the probability density and sample size analyses are conducted to validate the robustness of the new model, confirming its adaptability and stability towards algorithm randomness and historical information volume. Consequently, the novel model is employed to forecast the short-to-long-terms renewable energy consumption in the U.S., showcasing an upward trend and seasonal fluctuations of the consumption for the forthcoming 24 quarters from 2023Q4 to 2029Q3. These insights can offer valuable implications to the stakeholders such as energy suppliers, utility managers, and policy advocates, highlighting actionable strategies for optimizing renewable energy consumption forecasting and aiding sustainable development initiatives.

Suggested Citation

  • Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007694
    DOI: 10.1016/j.apenergy.2024.123386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    2. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    3. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    4. Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
    5. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    6. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    7. Wang, Zheng-Xin & He, Ling-Yang & Zheng, Hong-Hao, 2019. "Forecasting the residential solar energy consumption of the United States," Energy, Elsevier, vol. 178(C), pages 610-623.
    8. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    9. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    10. Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
    11. Wang, Xiaolei & Xie, Naiming & Yang, Lu, 2022. "A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    13. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Author Correction: Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(3), pages 271-271, March.
    14. Xixi Li & Fotios Petropoulos & Yanfei Kang, 2023. "Improving forecasting by subsampling seasonal time series," International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 976-992, February.
    15. Sun, Wei & Xu, Yanfeng, 2016. "Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 101(C), pages 366-379.
    16. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    17. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    18. Ye, Li & Dang, Yaoguo & Fang, Liping & Wang, Junjie, 2023. "A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system," Applied Energy, Elsevier, vol. 331(C).
    19. Poshnath, Aravind & Rismanchi, Behzad & Rajabifard, Abbas, 2023. "Adoption of Renewable Energy Systems in common properties of multi-owned buildings: Introduction of ‘Energy Entitlement’," Energy Policy, Elsevier, vol. 174(C).
    20. Ding, Song & Hu, Jiaqi & Lin, Qianqian, 2023. "Accurate forecasts and comparative analysis of Chinese CO2 emissions using a superior time-delay grey model," Energy Economics, Elsevier, vol. 126(C).
    21. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    22. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(2), pages 108-110, February.
    23. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    2. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    3. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    4. Li, Xuemei & Shi, Yansong & Zhao, Yufeng & Wu, Yajie & Zhou, Shiwei, 2024. "Seasonal waste, geotherm, nuclear, wood net power generations forecasting using a novel hybrid grey model with seasonally buffered and time-varying effect," Applied Energy, Elsevier, vol. 368(C).
    5. Li, Zekai & Hu, Xi & Guo, Huan & Xiong, Xin, 2023. "A novel Weighted Average Weakening Buffer Operator based Fractional order accumulation Seasonal Grouping Grey Model for predicting the hydropower generation," Energy, Elsevier, vol. 277(C).
    6. Xu, Jie & Wu, Wen-Ze & Liu, Chong & Xie, Wanli & Zhang, Tao, 2024. "An extensive conformable fractional grey model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    8. Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
    9. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    10. Zuin, Gianlucca & Buechler, Rob & Sun, Tao & Zanocco, Chad & Galuppo, Francisco & Veloso, Adriano & Rajagopal, Ram, 2023. "Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change," Energy, Elsevier, vol. 281(C).
    11. Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
    12. Xia, Lin & Ren, Youyang & Wang, Yuhong & Pan, Yangyang & Fu, Yiyang, 2024. "Forecasting China's renewable energy consumption using a novel dynamic fractional-order discrete grey multi-power model," Renewable Energy, Elsevier, vol. 233(C).
    13. Liu, Xiaomei & Li, Sihan & Gao, Meina, 2024. "A discrete time-varying grey Fourier model with fractional order terms for electricity consumption forecast," Energy, Elsevier, vol. 296(C).
    14. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    15. Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
    16. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    17. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    18. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    19. Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
    20. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.