IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222030596.html
   My bibliography  Save this article

Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method

Author

Listed:
  • Krishna, Attoti Bharath
  • Abhyankar, Abhijit R.

Abstract

Advanced stochastic programming-based power system operations planning requires wind power forecast in the form of scenarios. Generating wind power scenarios reflecting the intertemporal dependence over the forecast horizon is paramount for multi-period operations planning routines. Yet, less attention has been given to such time-coupled (temporal) wind power scenario generation (SG). Recent literature shows that copula-based SG methods are suitable for typical operations planning routines like economic dispatch and unit commitment. This work proposes a new and efficient data-driven temporal wind power SG framework using regular vine copula with variance reduction. The proposed SG puts forth two contributions to improve the quality of the temporal scenarios. The first contribution is to introduce the regular vine copula to model the temporal dependence structure of the wind power forecast error, which is shown to fit the real-world data better than the existing copula models. The second contribution is to propose a uniform design-based vine copula sampling algorithm, which benefits the downstream operations planning applications with improved convergence and accuracy of the solutions. A detailed multivariate scenario evaluation using multiple metrics shows that the proposed SG improves the quality of the temporal scenarios compared to the existing benchmarks. The Diebold-Mariano statistical test also verifies the significant improvement in the quality of the wind power scenarios.

Suggested Citation

  • Krishna, Attoti Bharath & Abhyankar, Abhijit R., 2023. "Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222030596
    DOI: 10.1016/j.energy.2022.126173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saez-Gallego, Javier & Morales, Juan M. & Madsen, Henrik & Jónsson, Tryggvi, 2014. "Determining reserve requirements in DK1 area of Nord Pool using a probabilistic approach," Energy, Elsevier, vol. 74(C), pages 682-693.
    2. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    3. Tito Homem-de-Mello & Güzin Bayraksan, 2015. "Stochastic Constraints and Variance Reduction Techniques," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 245-276, Springer.
    4. Anthony Papavasiliou & Shmuel S. Oren, 2013. "Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network," Operations Research, INFORMS, vol. 61(3), pages 578-592, June.
    5. Panos Parpas & Berk Ustun & Mort Webster & Quang Kha Tran, 2015. "Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 358-377, May.
    6. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    7. Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
    8. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    9. Tan, Jin & Wu, Qiuwei & Zhang, Menglin & Wei, Wei & Liu, Feng & Pan, Bo, 2021. "Chance-constrained energy and multi-type reserves scheduling exploiting flexibility from combined power and heat units and heat pumps," Energy, Elsevier, vol. 233(C).
    10. Serafin, Tomasz & Marcjasz, Grzegorz & Weron, Rafał, 2022. "Trading on short-term path forecasts of intraday electricity prices," Energy Economics, Elsevier, vol. 112(C).
    11. PAPAVASILIOU, Anthony & OREN, Schmuel S., 2013. "Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network," LIDAM Reprints CORE 2500, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyun Yoo & Yongju Son & Myungseok Yoon & Sungyun Choi, 2023. "A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors," Sustainability, MDPI, vol. 15(23), pages 1-15, December.
    2. Liu, Xin & Yu, Jingjia & Gong, Lin & Liu, Minxia & Xiang, Xi, 2024. "A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction," Energy, Elsevier, vol. 294(C).
    3. Wang, Xiaowei & Kang, Qiankun & Gao, Jie & Zhang, Fan & Wang, Xue & Qu, Xinyu & Guo, Liang, 2024. "Distribution network restoration supply method considers 5G base station energy storage participation," Energy, Elsevier, vol. 289(C).
    4. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    5. Liu, Hong & Yang, Luoxiao & Zhang, Bingying & Zhang, Zijun, 2023. "A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. Site Wang & Harsha Gangammanavar & Sandra Ekşioğlu & Scott J. Mason, 2020. "Statistical estimation of operating reserve requirements using rolling horizon stochastic optimization," Annals of Operations Research, Springer, vol. 292(1), pages 371-397, September.
    3. Ye, Lin & Peng, Yishu & Li, Yilin & Li, Zhuo, 2024. "A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power," Applied Energy, Elsevier, vol. 364(C).
    4. Anthony Papavasiliou, 2021. "An Overview of Probabilistic Dimensioning of Frequency Restoration Reserves with a Focus on the Greek Electricity Market," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Dirin, Sepehr & Rahimiyan, Morteza & Baringo, Luis, 2023. "Optimal offering strategy for wind-storage systems under correlated wind production," Applied Energy, Elsevier, vol. 333(C).
    6. Hui Hwang Goh & Gumeng Peng & Dongdong Zhang & Wei Dai & Tonni Agustiono Kurniawan & Kai Chen Goh & Chin Leei Cham, 2022. "A New Wind Speed Scenario Generation Method Based on Principal Component and R-Vine Copula Theories," Energies, MDPI, vol. 15(7), pages 1-21, April.
    7. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    8. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    9. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    10. Noori, Ehsan & Khazaei, Ehsan & Tavaro, Mehdi & Bardideh, Farhad, 2019. "Economically Operation of Power Utilities Base on MILP Approach," MPRA Paper 95910, University Library of Munich, Germany.
    11. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    12. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    13. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    14. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    15. De Vos, K. & Stevens, N. & Devolder, O. & Papavasiliou, A. & Hebb, B. & Matthys-Donnadieu, J., 2019. "Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium," Energy Policy, Elsevier, vol. 124(C), pages 272-285.
    16. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    17. Trine K. Boomsma, 2019. "Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 406-409, October.
    18. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    19. Varawala, Lamia & Dán, György & Hesamzadeh, Mohammad Reza & Baldick, Ross, 2023. "A generalised approach for efficient computation of look ahead security constrained optimal power flow," European Journal of Operational Research, Elsevier, vol. 310(2), pages 477-494.
    20. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222030596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.