IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4939-1384-8_9.html
   My bibliography  Save this book chapter

Stochastic Constraints and Variance Reduction Techniques

In: Handbook of Simulation Optimization

Author

Listed:
  • Tito Homem-de-Mello

    (Universidad Adolfo Ibañez)

  • Güzin Bayraksan

    (The Ohio State University)

Abstract

We provide an overview of two select topics in Monte Carlo simulation-based methods for stochastic optimization: problems with stochastic constraints and variance reduction techniques. While Monte Carlo simulation-based methods have been successfully used for stochastic optimization problems with deterministic constraints, there is a growing body of work on its use for problems with stochastic constraints. The presence of stochastic constraints brings new challenges in ensuring and testing optimality, allocating sample sizes, etc., especially due to difficulties in determining feasibility. We review results for general stochastic constraints and also discuss special cases such as probabilistic and stochastic dominance constraints. Next, we review the use of variance reduction techniques (VRT) in a stochastic optimization setting. While this is a well-studied topic in statistics and simulation, the use of VRT in stochastic optimization requires a more thorough analysis. We discuss asymptotic properties of the resulting approximations and their use within Monte Carlo simulation-based solution methods.

Suggested Citation

  • Tito Homem-de-Mello & Güzin Bayraksan, 2015. "Stochastic Constraints and Variance Reduction Techniques," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 245-276, Springer.
  • Handle: RePEc:spr:isochp:978-1-4939-1384-8_9
    DOI: 10.1007/978-1-4939-1384-8_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishna, Attoti Bharath & Abhyankar, Abhijit R., 2023. "Time-coupled day-ahead wind power scenario generation: A combined regular vine copula and variance reduction method," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4939-1384-8_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.