IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007035.html
   My bibliography  Save this article

A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction

Author

Listed:
  • Liu, Xin
  • Yu, Jingjia
  • Gong, Lin
  • Liu, Minxia
  • Xiang, Xi

Abstract

Wind prediction is of great significance for wind energy utilization due to the stochastic nature of wind. To effectively facilitate various downstream decision-making tasks such as wind turbine control, predictive wind Scenario Generation (SG), which is capable of providing a set of deterministic instantiated wind prediction results, plays a critical role. In this paper, a novel Graph neural networks-based Adaptive Predictive Generative Adversarial Network (GAPGAN) model is proposed for accurate prediction of short-term future scenarios of a wind field. In GAPGAN, the original multivariate time series data are first reconstructed into the form of a graph, and spatiotemporal features are then extracted using Graph Convolutional Networks (GCNs). Next, a predictive generative adversarial network (PGAN) framework is proposed, which could generate different outputs corresponding to given historical observations as conditions. Finally, an adaptive PGAN training mechanism is introduced to stabilize the training process, and the best SG model is selected based on the proposed comprehensive evaluation system. Based on wind speed data collected from 11 wind turbines, computational experiments validate that the GAPGAN outperforms five benchmarking models in terms of point prediction accuracy, shape similarity, uncertainty prediction quality, and prediction scenario diversity.

Suggested Citation

  • Liu, Xin & Yu, Jingjia & Gong, Lin & Liu, Minxia & Xiang, Xi, 2024. "A GCN-based adaptive generative adversarial network model for short-term wind speed scenario prediction," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007035
    DOI: 10.1016/j.energy.2024.130931
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.