IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas036054422202309x.html
   My bibliography  Save this article

Identification of key influencing factors to Chinese coal power enterprises transition in the context of carbon neutrality: A modified fuzzy DEMATEL approach

Author

Listed:
  • Li, Yanbin
  • Zhao, Ke
  • Zhang, Feng

Abstract

Coal power is the major force behind the flexible peaking of China's power system. Its complete phaseout is unrealistic and may cause multiple problems related to social stability. Therefore, how to guarantee a steady and orderly transition of coal power is critical. To promote coal power to transform smoothly, this study applies a modified fuzzy Decision-making Trial and Evaluation Laboratory (DEMATEL) approach to identify key influencing factors and their influence-influenced connection in Chinese coal power transition, basing on a state-owned coal-fired plant. Firstly, by surveying literatures and consulting experts, an index system of 12 main factors is identified, which includes 4 dimensions (management capability, market price, resource allocation, society environment). Then, the Interval Type-2 Fuzzy Sets (IT2FSs), Ordered Weighted Average (OWA) operator, and K-means clustering algorithm are used to optimize the approach. Six factors are judged as key influencing factors in coal power plant's transition according to the findings, among which policy, units' configuration, and market prices are included with high scores. Finally, political solutions are proposed to facilitate the efficient transition of coal plant.

Suggested Citation

  • Li, Yanbin & Zhao, Ke & Zhang, Feng, 2023. "Identification of key influencing factors to Chinese coal power enterprises transition in the context of carbon neutrality: A modified fuzzy DEMATEL approach," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202309x
    DOI: 10.1016/j.energy.2022.125427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202309X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xinhua & Gan, Dongmei & Wang, Yali & Liu, Yu & Ge, Jiali & Xie, Rui, 2020. "The impact of price and revenue floors on carbon emission reduction investment by coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    2. Mohan, Preeya & Strobl, Eric & Watson, Patrick, 2021. "Innovation, market failures and policy implications of KIBS firms: The case of Trinidad and Tobago's oil and gas sector," Energy Policy, Elsevier, vol. 153(C).
    3. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2021. "Location selection for waste-to-energy plants by using fuzzy linear programming," Energy, Elsevier, vol. 234(C).
    4. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: evidences from China’s coal market," LSE Research Online Documents on Economics 102540, London School of Economics and Political Science, LSE Library.
    5. Fan, Jing-Li & Wei, Shijie & Yang, Lin & Wang, Hang & Zhong, Ping & Zhang, Xian, 2019. "Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China," Energy, Elsevier, vol. 176(C), pages 143-155.
    6. Heinisch, Katja & Holtemöller, Oliver & Schult, Christoph, 2021. "Power generation and structural change: Quantifying economic effects of the coal phase-out in Germany," Energy Economics, Elsevier, vol. 95(C).
    7. Singh Doorga, Jay Rovisham & Rughooputh, Soonil D.D.V. & Boojhawon, Ravindra, 2019. "High resolution spatio-temporal modelling of solar photovoltaic potential for tropical islands: Case of Mauritius," Energy, Elsevier, vol. 169(C), pages 972-987.
    8. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    9. Zhang, Xiaoli & Cui, Xueqin & Li, Bo & Hidalgo-Gonzalez, Patricia & Kammen, Daniel M & Zou, Ji & Wang, Ke, 2022. "Immediate actions on coal phaseout enable a just low-carbon transition in China’s power sector," Applied Energy, Elsevier, vol. 308(C).
    10. Ganji, Seyedreza Seyedalizadeh & Rassafi, Amir Abbas & Bandari, Samaneh Jamshidi, 2020. "Application of evidential reasoning approach and OWA operator weights in road safety evaluation considering the best and worst practice frontiers," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    11. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    12. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Ai, Hongshan & Zhou, Zhengqing & Li, Ke & Kang, Zhi-Yong, 2021. "Impacts of the desulfurization price subsidy policy on SO2 reduction: Evidence from China's coal-fired power plants," Energy Policy, Elsevier, vol. 157(C).
    14. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    15. Lin, Boqiang & Wu, Nan, 2022. "Will the China's carbon emissions market increase the risk-taking of its enterprises?," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 413-434.
    16. Mo, Jianlei & Cui, Lianbiao & Duan, Hongbo, 2021. "Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing," Energy Economics, Elsevier, vol. 99(C).
    17. Rashidi, Rahim & Khamforoosh, Keyhan & Sheikhahmadi, Amir, 2020. "An analytic approach to separate users by introducing new combinations of initial centers of clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Akerboom, Sanne & Botzen, Wouter & Buijze, Anoeska & Michels, Ank & van Rijswick, Marleen, 2020. "Meeting goals of sustainability policy: CO2 emission reduction, cost-effectiveness and societal acceptance. An analysis of the proposal to phase-out coal in the Netherlands," Energy Policy, Elsevier, vol. 138(C).
    19. Blyth, William & McCarthy, Rory & Gross, Robert, 2015. "Financing the UK power sector: Is the money available?," Energy Policy, Elsevier, vol. 87(C), pages 607-622.
    20. Kazançoglu, Yigit & Ada, Erhan & Ozturkoglu, Yucel & Ozbiltekin, Melisa, 2020. "Analysis of the barriers to urban mining for resource melioration in emerging economies," Resources Policy, Elsevier, vol. 68(C).
    21. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    22. Jebran, Khalil & Chen, Shihua, 2022. "Corporate policies and outcomes during the COVID-19 crisis: Does managerial ability matter?," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    23. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    24. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market," Energy Economics, Elsevier, vol. 84(C).
    25. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    26. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    27. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    28. Li, Jinghua & Luo, Yichen & Wei, Shanyang, 2022. "Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target," Energy, Elsevier, vol. 244(PA).
    29. Zhang, Weirong & Ren, Mengjia & Kang, Junjie & Zhou, Yiou & Yuan, Jiahai, 2022. "Estimating stranded coal assets in China's power sector," Utilities Policy, Elsevier, vol. 75(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Jie & Gao, Junhong, 2023. "Natural resource curse hypothesis and governance: Understanding the role of rule of law and political risk in the context of China," Resources Policy, Elsevier, vol. 85(PB).
    2. Hong Chen & Haowen Zhu & Tianchen Sun & Xiangyu Chen & Tao Wang & Wenhong Li, 2023. "Does Environmental Regulation Promote Corporate Green Innovation? Empirical Evidence from Chinese Carbon Capture Companies," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    3. Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
    4. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    5. Feng Dong & Guoqing Li & Yajie Liu & Qing Xu & Caixia Li, 2023. "Spatial-Temporal Evolution and Cross-Industry Synergy of Carbon Emissions: Evidence from Key Industries in the City in Jiangsu Province, China," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    6. Jie Liu & Liting Wan & Wanqing Wang & Guanding Yang & Qian Ma & Haowen Zhou & Huyun Zhao & Feng Lu, 2023. "Integrated Fuzzy DEMATEL-ISM-NK for Metro Operation Safety Risk Factor Analysis and Multi-Factor Risk Coupling Study," Sustainability, MDPI, vol. 15(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    2. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    3. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    4. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).
    5. Gang Kou & Özlem Olgu Akdeniz & Hasan Dinçer & Serhat Yüksel, 2021. "Fintech investments in European banks: a hybrid IT2 fuzzy multidimensional decision-making approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-28, December.
    6. Mengyao Liu & Hongli Jiang, 2022. "Can the Energy-Consumption Permit Trading Scheme Curb SO 2 Emissions? Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    7. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    8. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
    9. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    10. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Hongtao Ren & Wenji Zhou & Hangzhou Wang & Bo Zhang & Tieju Ma, 2022. "An energy system optimization model accounting for the interrelations of multiple stochastic energy prices," Annals of Operations Research, Springer, vol. 316(1), pages 555-579, September.
    12. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    13. Sibande, Xolani & Demirer, Riza & Balcilar, Mehmet & Gupta, Rangan, 2023. "On the pricing effects of bitcoin mining in the fossil fuel market: The case of coal," Resources Policy, Elsevier, vol. 85(PB).
    14. Li, Jingyu & Liu, Ranran & Yao, Yanzhen & Xie, Qiwei, 2022. "Time-frequency volatility spillovers across the international crude oil market and Chinese major energy futures markets: Evidence from COVID-19," Resources Policy, Elsevier, vol. 77(C).
    15. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    16. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    17. Gong, Xu & Guan, Keqin & Chen, Liqing & Liu, Tangyong & Fu, Chengbo, 2021. "What drives oil prices? — A Markov switching VAR approach," Resources Policy, Elsevier, vol. 74(C).
    18. Nan, Yu & Sun, Renjin & Zhen, Zhao & Fangjing, Chu, 2022. "Measurement of international crude oil price cyclical fluctuations and correlation with the world economic cyclical changes," Energy, Elsevier, vol. 260(C).
    19. Mufutau Opeyemi Bello & Sakiru Adebola Solarin, 2022. "Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy," Energy & Environment, , vol. 33(1), pages 64-84, February.
    20. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202309x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.