IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0298347.html
   My bibliography  Save this article

Renewable energy for sustainable development in China: Discourse analysis

Author

Listed:
  • Baohong Jiang
  • Muhammad Yousaf Raza

Abstract

China is the world’s largest renewable energy installer with a capacity of 1020 gigawatts in 2021. This study aims to analyze the public discourse around China’s green energy and green technology and the paths to sustainable development by comparing public policy. The public discourse analysis approach and Grey Prediction Model are applied to analyze the motives for the distinct inferences being reached over the influences of renewable energy initiatives (REIs). The findings show that the modeling and assumptions are found different in theoretical perspectives, especially in the case of economic and environmental sustainability. The results are close to the other jurisdictions following REIs, including feed-in-tariff, standards and renewable liabilities. Based on statistics during 2012–2021 Five-year plan period, three major renewables are forecasted under base, reference and aggressive scenarios with interesting results. The wind would rise by 109 terawatt hours in an aggressive scenario while solar will rise from 83–99% with a rise of four times in the next decade. Finally, China’s current energy policy has been proven to be a series of effective public policies by making the discourse analysis, which can energetically widen the subsidy funds’ sources, discover miscellaneous financing techniques, standardized the subsidy process, supervise in applying the renewable energy technologies, and enhance the feed-in-tariff attraction of consumers and private investors.

Suggested Citation

  • Baohong Jiang & Muhammad Yousaf Raza, 2024. "Renewable energy for sustainable development in China: Discourse analysis," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-20, November.
  • Handle: RePEc:plo:pone00:0298347
    DOI: 10.1371/journal.pone.0298347
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298347
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298347&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0298347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mutiu A. Oyinlola & Abdulfatai A. Adedeji & Modupe O. Bolarinwa, 2020. "Exploring the nexus among natural resource rents, human capital and industrial development in the SSA region," Economic Change and Restructuring, Springer, vol. 53(1), pages 87-111, February.
    2. Sun, Yunpeng & Guan, Weimin & Cao, Yuning & Bao, Qun, 2022. "Role of green finance policy in renewable energy deployment for carbon neutrality: Evidence from China," Renewable Energy, Elsevier, vol. 197(C), pages 643-653.
    3. Manuschevich, Daniela, 2016. "Neoliberalization of forestry discourses in Chile," Forest Policy and Economics, Elsevier, vol. 69(C), pages 21-30.
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. Böhringer, Christoph & Balistreri, Edward J. & Rutherford, Thomas F., 2012. "The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29)," Energy Economics, Elsevier, vol. 34(S2), pages 97-110.
    6. Raza, Muhammad Yousaf & Lin, Boqiang, 2022. "Energy efficiency and factor productivity in Pakistan: Policy perspectives," Energy, Elsevier, vol. 247(C).
    7. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    8. Díaz, Antonia & Marrero, Gustavo A. & Puch, Luis A. & Rodríguez, Jesús, 2019. "Economic growth, energy intensity and the energy mix," Energy Economics, Elsevier, vol. 81(C), pages 1056-1077.
    9. Luisa Losada-Puente & José Antonio Blanco & Adina Dumitru & Ioannis Sebos & Aggelos Tsakanikas & Ioanna Liosi & Stelios Psomas & Mariangela Merrone & Diego Quiñoy & Eduardo Rodríguez, 2023. "Cross-Case Analysis of the Energy Communities in Spain, Italy, and Greece: Progress, Barriers, and the Road Ahead," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    10. Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
    11. Su, Yi & Fan, Qi-ming, 2022. "Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China's provinces," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    12. Dongdong Song & Boya Jia & Hongtao Jiao, 2022. "Review of Renewable Energy Subsidy System in China," Energies, MDPI, vol. 15(19), pages 1-18, October.
    13. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    14. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    15. Funtowicz, Silvio O. & Ravetz, Jerome R., 1994. "The worth of a songbird: ecological economics as a post-normal science," Ecological Economics, Elsevier, vol. 10(3), pages 197-207, August.
    16. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    17. Dryzek, John S. & Pickering, Jonathan, 2017. "Deliberation as a catalyst for reflexive environmental governance," Ecological Economics, Elsevier, vol. 131(C), pages 353-360.
    18. Hu, Bo & Zhou, P. & Zhang, L.P., 2022. "A digital business model for accelerating distributed renewable energy expansion in rural China," Applied Energy, Elsevier, vol. 316(C).
    19. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    20. Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
    21. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    22. Ma, Rufei & Deng, Liqian & Ji, Qiang & Zhai, Pengxiang, 2022. "Environmental regulations, clean energy access, and household energy poverty: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    23. Leipprand, Anna & Flachsland, Christian & Pahle, Michael, 2017. "Advocates or cartographers? Scientific advisors and the narratives of German energy transition," Energy Policy, Elsevier, vol. 102(C), pages 222-236.
    24. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    25. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    26. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    27. Nugent, Jeffrey B. & Lu, Jiaxuan, 2021. "China's outward foreign direct investment in the Belt and Road Initiative: What are the motives for Chinese firms to invest?," China Economic Review, Elsevier, vol. 68(C).
    28. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    29. Zhang, Alex Hongliang & Sirin, Selahattin Murat & Fan, Conglai & Bu, Maoliang, 2022. "An analysis of the factors driving utility-scale solar PV investments in China: How effective was the feed-in tariff policy?," Energy Policy, Elsevier, vol. 167(C).
    30. Xie, Qiaoyan & Adebayo, Tomiwa Sunday & Irfan, Muhammad & Altuntaş, Mehmet, 2022. "Race to environmental sustainability: Can renewable energy consumption and technological innovation sustain the strides for China?," Renewable Energy, Elsevier, vol. 197(C), pages 320-330.
    31. Dong, Changgui & Zhou, Runmin & Li, Jiaying, 2021. "Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China," Applied Energy, Elsevier, vol. 281(C).
    32. Liu, Zhen & Tang, Yuk Ming & Chau, Ka Yin & Chien, Fengsheng & Iqbal, Wasim & Sadiq, Muhammad, 2021. "Incorporating strategic petroleum reserve and welfare losses: A way forward for the policy development of crude oil resources in South Asia," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Suisui & Zhang, Hongyan & Wang, Shuhong, 2022. "Trade openness, economic growth, and energy intensity in China," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    2. Tang, Juan & Jiang, Yanyan, 2024. "Natural resources-environment dilemma: The context of foreign direct investment and international trade," Resources Policy, Elsevier, vol. 89(C).
    3. Bryant, Scott T. & Straker, Karla & Wrigley, Cara, 2019. "The discourses of power – governmental approaches to business models in the renewable energy transition," Energy Policy, Elsevier, vol. 130(C), pages 41-59.
    4. Liu, Fei & Zhang, Xudong & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Asymmetric and moderating role of industrialisation and technological innovation on energy intensity: Evidence from BRICS economies," Renewable Energy, Elsevier, vol. 198(C), pages 1364-1372.
    5. Li, Songran & Shao, Qinglong, 2022. "Greening the finance for climate mitigation: An ARDL–ECM approach," Renewable Energy, Elsevier, vol. 199(C), pages 1469-1481.
    6. Wen, Shiyan & Lin, Boqiang & Zhou, Yicheng, 2021. "Does financial structure promote energy conservation and emission reduction? Evidence from China," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 755-766.
    7. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).
    8. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    9. Boulanouar, Zakaria & Essid, Lobna & Omri, Anis, 2024. "Achieving carbon neutrality in emerging markets: The dual impact of energy transition investments on economic growth and carbon emissions," International Review of Economics & Finance, Elsevier, vol. 96(PC).
    10. Jikun Jiang & Shenglai Zhu & Weihao Wang, 2022. "Carbon Emissions, Economic Growth, Urbanization, and Foreign Trade in China: Empirical Evidence from ARDL Models," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    11. Felician A. Kitole & Jennifer K. Sesabo & Olufunmilola F. Adesiyan & A. O. Ige & Temitope O. Ojo & Chijioke U. Emenike & Nolwazi Z. Khumalo & Hazem S. Kassem & Khalid M. Elhindi, 2024. "Greening the Growth: A Comprehensive Analysis of Globalization, Economic Performance, and Environmental Degradation in Tanzania," Sustainability, MDPI, vol. 16(24), pages 1-19, December.
    12. Ersin Yavuz & Emre Kilic & Abdullah Emre Caglar, 2024. "A new hypothesis for the unemployment-environment dilemma: is the environmental Phillips curve valid in the framework of load capacity factor in Turkiye?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29475-29492, November.
    13. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    14. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    15. C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.
    16. Zhang, Yu & Zhang, Sufang, 2018. "The impacts of GDP, trade structure, exchange rate and FDI inflows on China's carbon emissions," Energy Policy, Elsevier, vol. 120(C), pages 347-353.
    17. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    18. Guan, Jialin & Kirikkaleli, Dervis & Bibi, Ayesha & Zhang, Weike, 2020. "Natural resources rents nexus with financial development in the presence of globalization: Is the “resource curse” exist or myth?," Resources Policy, Elsevier, vol. 66(C).
    19. Gabriela Michalek & Reimund Schwarze, 2015. "Carbon leakage: pollution, trade or politics?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1471-1492, December.
    20. Ajayi, Patricia & Ogunrinola, Adedeji, 2020. "Growth, Trade Openness and Environmental Degradation in Nigeria," MPRA Paper 100713, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0298347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.