IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics0360544222016784.html
   My bibliography  Save this article

China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission

Author

Listed:
  • Yan, Xia
  • Jie, Wu
  • Minjun, Shi
  • Shouyang, Wang
  • Zhuoying, Zhang

Abstract

This paper investigates the linkage between regional electricity pricing and water resources based on an accounting of the electricity-related virtual water (VW) transmissions in the framework of interregional input-output model. This study finds out that the water resource conditions of the provinces with scarce water resources but rich energy resources are worsening due to power generation and thus the power generation's impacts on water resources in these regions should be seriously addressed across its entire life cycle. This study confirms the coexistence of the transmission of low-priced electricity to the regions with higher electricity prices and the hidden transmission of high-priced water resources to the regions with rich water resource endowment and lower water prices through electricity-related VW transmissions, which can aggravate the “invisible imbalance” of the spatial allocation of water resources. This study also emphasizes that China's regional electricity pricing mechanisms should fully involve the external costs of water to stimulate energy enterprises' willingness to control water use. The results of this study can provide scientific references for joint management of water and energy, and thus are conducive to policy formulations relevant to electricity pricing reforms in China.

Suggested Citation

  • Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016784
    DOI: 10.1016/j.energy.2022.124775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    2. Aili, Ablimit & Zhao, Dongliang & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2021. "Reduction of water consumption in thermal power plants with radiative sky cooling," Applied Energy, Elsevier, vol. 302(C).
    3. Paul Behrens & Michelle T. H. van Vliet & Tijmen Nanninga & Brid Walsh & João F. D. Rodrigues, 2017. "Climate change and the vulnerability of electricity generation to water stress in the European Union," Nature Energy, Nature, vol. 2(8), pages 1-7, August.
    4. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Ackerman, Frank & Fisher, Jeremy, 2013. "Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States," Energy Policy, Elsevier, vol. 59(C), pages 235-241.
    6. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    7. Guo, Zheng & Ma, Linwei & Liu, Pei & Jones, Ian & Li, Zheng, 2016. "A multi-regional modelling and optimization approach to China's power generation and transmission planning," Energy, Elsevier, vol. 116(P2), pages 1348-1359.
    8. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    9. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    10. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    11. Chao Zhang & Lijin Zhong & Jiao Wang, 2018. "Decoupling between water use and thermoelectric power generation growth in China," Nature Energy, Nature, vol. 3(9), pages 792-799, September.
    12. Christopher M. Chini & Lucas A. Djehdian & William N. Lubega & Ashlynn S. Stillwell, 2018. "Virtual water transfers of the US electric grid," Nature Energy, Nature, vol. 3(12), pages 1115-1123, December.
    13. Zhang, Chao & Zhong, Lijin & Liang, Sai & Sanders, Kelly T. & Wang, Jiao & Xu, Ming, 2017. "Virtual scarce water embodied in inter-provincial electricity transmission in China," Applied Energy, Elsevier, vol. 187(C), pages 438-448.
    14. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    15. Liao, Xiawei & Zhao, Xu & Hall, Jim W. & Guan, Dabo, 2018. "Categorising virtual water transfers through China’s electric power sector," Applied Energy, Elsevier, vol. 226(C), pages 252-260.
    16. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    17. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    18. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhijie & Wen, Shiyan & Wang, Yao, 2023. "Power coming from the sky: Economic benefits of inter-regional power transmission in China," Energy Economics, Elsevier, vol. 119(C).
    2. Huang, Yingfei & Zhang, Fengming & Liang, Zhaojian & Li, Yufeng & Wu, Tong, 2023. "Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems," Energy, Elsevier, vol. 266(C).
    3. Hasan Murat Ertuğrul & Mustafa Tevfik Kartal & Serpil Kılıç Depren & Uğur Soytaş, 2022. "Determinants of Electricity Prices in Turkey: An Application of Machine Learning and Time Series Models," Energies, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    2. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    3. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    4. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    6. Zhang, Yiyi & Wang, Jiaqi & Zhang, Linmei & Liu, Jiefeng & Zheng, Hanbo & Fang, Jiake & Hou, Shengren & Chen, Shaoqing, 2020. "Optimization of China’s electric power sector targeting water stress and carbon emissions," Applied Energy, Elsevier, vol. 271(C).
    7. Yiyi Zhang & Shengren Hou & Jiefeng Liu & Hanbo Zheng & Jiaqi Wang & Chaohai Zhang, 2020. "Evolution of Virtual Water Transfers in China’s Provincial Grids and Its Driving Analysis," Energies, MDPI, vol. 13(2), pages 1-19, January.
    8. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    9. Li, Junjie & Yan, Yulong & Wang, Yirong & Zhang, Yifu & Shao, Lianwei & Li, Menggang, 2024. "Spatial-successive transfer of virtual scarcity water along China's coal-based electric chain," Energy, Elsevier, vol. 288(C).
    10. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    11. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    12. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    13. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    14. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).
    15. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    16. Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
    17. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    18. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    19. Zhang, Yiyi & Hou, Shengren & Chen, Shaoqing & Long, Huihui & Liu, Jiefeng & Wang, Jiaqi, 2021. "Tracking flows and network dynamics of virtual water in electricity transmission across China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.