IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp434-450.html
   My bibliography  Save this article

Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus

Author

Listed:
  • Logan, Lauren H.
  • Stillwell, Ashlynn S.

Abstract

As global populations grow, demand for generation of affordable and efficient electricity will likely increase, requiring tradeoffs between power generation and ecosystems sustainability, including water quality and species habitat. Once-through thermoelectric power plants, representing 30% of the electricity generation in the United States, withdraw and discharge large quantities of water for cooling purposes. This process can cause thermal pollution in waterways, adversely affecting aquatic communities. Incorporating biology into the energy-water nexus can aid decision-makers in identifying tradeoffs and more effectively assessing and managing aquatic ecosystems. To quantify thermal pollution and the risk posed to aquatic species, we created an adaptable, novel methodology that utilizes plume mixing and probability distribution analyses on temperature and flow data for both a power plant’s discharge and the adjoining river. To assess risk, we developed a probability risk space that quantifies the probability of exceeding a given temperature. The Shawnee Fossil Plant on the Ohio River was selected to demonstrate the methodology, and three fish species with associated upper thermal avoidance limits were selected for comparison. Our results highlight that both the lateral and longitudinal location from the point of effluent mixing within the river affects the probability of thermal risk to aquatic species. A high degree of risk within a plume can reduce to a smaller total risk within the context of a large river cross-section. Our results emphasize the need for individualized risk assessment for Clean Water Act §316(a) requirements for power plant effluent temperature limits and National Pollutant Discharge Elimination System permits. These findings are applicable in policy-making, environmental mitigation, and power plant operations management.

Suggested Citation

  • Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:434-450
    DOI: 10.1016/j.apenergy.2017.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    2. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    3. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    4. Si, X. & Baccou, J. & Liandrat, J., 2016. "On four-point penalized Lagrange subdivision schemes," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 278-299.
    5. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    6. Scott, Christopher A. & Pierce, Suzanne A. & Pasqualetti, Martin J. & Jones, Alice L. & Montz, Burrell E. & Hoover, Joseph H., 2011. "Policy and institutional dimensions of the water-energy nexus," Energy Policy, Elsevier, vol. 39(10), pages 6622-6630, October.
    7. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    8. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    9. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    10. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    11. Tidwell, Vincent C. & Macknick, Jordan & Zemlick, Katie & Sanchez, Jasmine & Woldeyesus, Tibebe, 2014. "Transitioning to zero freshwater withdrawal in the U.S. for thermoelectric generation," Applied Energy, Elsevier, vol. 131(C), pages 508-516.
    12. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    13. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    14. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    15. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    16. Zhang, Chao & Zhong, Lijin & Liang, Sai & Sanders, Kelly T. & Wang, Jiao & Xu, Ming, 2017. "Virtual scarce water embodied in inter-provincial electricity transmission in China," Applied Energy, Elsevier, vol. 187(C), pages 438-448.
    17. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    18. Feeley, Thomas J. & Skone, Timothy J. & Stiegel, Gary J. & McNemar, Andrea & Nemeth, Michael & Schimmoller, Brian & Murphy, James T. & Manfredo, Lynn, 2008. "Water: A critical resource in the thermoelectric power industry," Energy, Elsevier, vol. 33(1), pages 1-11.
    19. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    20. DeNooyer, Tyler A. & Peschel, Joshua M. & Zhang, Zhenxing & Stillwell, Ashlynn S., 2016. "Integrating water resources and power generation: The energy–water nexus in Illinois," Applied Energy, Elsevier, vol. 162(C), pages 363-371.
    21. Nanduri, Vishnu & Saavedra-Antolínez, Ivan, 2013. "A competitive Markov decision process model for the energy–water–climate change nexus," Applied Energy, Elsevier, vol. 111(C), pages 186-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    2. Bolorinos, Jose & Yu, Yang & Ajami, Newsha K. & Rajagopal, Ram, 2018. "Balancing marine ecosystem impact and freshwater consumption with water-use fees in California’s power markets: An evaluation of possibilities and trade-offs," Applied Energy, Elsevier, vol. 226(C), pages 644-654.
    3. Sandra Venghaus & Carolin Märker & Sophia Dieken & Florian Siekmann, 2019. "Linking Environmental Policy Integration and the Water-Energy-Land-(Food-)Nexus: A Review of the European Union’s Energy, Water, and Agricultural Policies," Energies, MDPI, vol. 12(23), pages 1-16, November.
    4. Chini, Christopher M. & Stillwell, Ashlynn S., 2020. "The changing virtual water trade network of the European electric grid," Applied Energy, Elsevier, vol. 260(C).
    5. Payet-Burin, Raphael & Bertoni, Federica & Davidsen, Claus & Bauer-Gottwein, Peter, 2018. "Optimization of regional water - power systems under cooling constraints and climate change," Energy, Elsevier, vol. 155(C), pages 484-494.
    6. Logan, Lauren H. & Gupta, Rohini S. & Ando, Amy & Suski, Cory & Stillwell, Ashlynn S., 2021. "Quantifying tradeoffs between electricity generation and fish populations via population habitat duration curves," Ecological Modelling, Elsevier, vol. 440(C).
    7. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    8. Mariola Kędra, 2023. "Cooling Water for Electricity Production in Poland: Assessment and New Perspectives," Energies, MDPI, vol. 16(6), pages 1-18, March.
    9. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    2. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    3. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    4. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    5. Panda, Manas Ranjan & Tyagi, Arjun & Dhanya, C.T. & Verma, Ashu & Swain, Anshuman, 2023. "Vulnerability assessment of thermal power plants in India under water stress conditions," Energy, Elsevier, vol. 276(C).
    6. Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
    7. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    8. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    9. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    10. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    11. Duan, Cuncun & Chen, Bin, 2020. "Driving factors of water-energy nexus in China," Applied Energy, Elsevier, vol. 257(C).
    12. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    13. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    14. Joe Williams & Stefan Bouzarovski & Erik Swyngedouw, 2019. "The urban resource nexus: On the politics of relationality, water–energy infrastructure and the fallacy of integration," Environment and Planning C, , vol. 37(4), pages 652-669, June.
    15. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    16. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    17. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    18. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    19. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    20. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:434-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.